- 无标题文档
查看论文信息

中文题名:

 

栅/杆复合超表面结构光波段正交偏振转换机理研究

    

姓名:

 陈志伟    

学号:

 1049731904367    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 信息工程学院    

专业:

 电子与通信工程    

研究方向:

 超表面的偏振调控    

第一导师姓名:

 杜庆国    

第一导师院系:

 信息工程学院    

完成日期:

 2022-06-15    

答辩日期:

 2022-05-11    

中文关键词:

 

超表面 ; 偏振调控 ; 全介质 ; 非对称 ; 蓝光

    

中文摘要:

超表面是一种亚波长阵列人工微纳结构,因其特殊的电磁谐振效应而具有一些天然材料所不具备的新颖的电磁特性,如波前调控和异常透射等。偏振是电磁波的标志之一,偏振态的电磁波在无线通信,成像,传感等领域起到了非常重要的作用。近年来,越来越多的科研人员投身于超表面偏振态调控的研究中。超表面由于其具有低损耗、宽带响应、超薄、尺寸小易集成等诸多优点,利用超表面结构产生偏振态电磁波在偏振成像探测、生物传感、量子通信等诸多偏振调控相关领域都有着巨大的应用前景。本文所做主要工作是研究超表面结构的正交偏振转换机理,首先设计并研究了一种五层金属超表面结构,实现了蓝光波段入射光的非对称传输;为了实现自然光入射,特定线偏振光的透射率大于50%,又设计并研究了一种三层金属超表面结构,实现了蓝光波段入射光的非对称偏振转换;在前两种结构基础上,为了进一步提高器件的偏振转换性能,设计并研究了高透射高偏振转换的双层介质超表面,并利用时域有限差分法计算并分析了以上三种超表面结构的器件性能和内在机理。本论文相关研究内容如下:

(1)通过文献调研,研究并分析了国内外金属/介质超表面的研究现状,详细描述了金属/介质超表面的偏振调控特性以及内在机理。

(2)设计了一种基于正交金属栅的蓝光波段非对称传输超表面结构,实现了对正入射线偏振光的非对称传输,对入射线偏光的交叉偏振透射率峰值达到68%左右。对超表面结构进行了仿真计算和性能分析,研究了该结构的非对称传输性能。通过建立类法布里珀罗腔模型,为高偏振转换非对称传输的形成提供了明确的解释机制,并优化了主要结构参数。

(3)设计了一种金属双杆和金属栅耦合的蓝光波段非对称偏振转换超表面结构,实现了对特定线偏振光的高透过,而对其正交线偏振光进行偏振转换,使得在自然光入射条件下,特定线偏光的透过率大于50%。对超表面结构进行了仿真计算和性能分析,研究了该结构的非对称偏振转换性能。基于谐振波长处的表面电流分布,分析了该结构产生高效率非对称偏振转换的内在机理,证明了该结构能实现自然光入射,特定线偏光的透过率大于50%。最后结合深度学习来寻找全局最优的结构参数,进一步优化了器件性能。

(4)设计了一种基于全介质双杆的单位转换效率偏振转换超表面结构,实现了正入射线偏振光接近100%的偏振转换效率。对超表面结构进行了仿真计算和性能分析,研究了它的结构性能。分析了该全介质超表面能够实现近100% 偏振转换的基本原理。通过多极分解对谐振波长处超表面结构的高透过率和高偏振转换进行了研究,并优化了主要结构参数。

(5)总结本论文提出的超表面结构的研究内容,并展望将来可以通过全介质超表面结构来实现更高的非对称偏振调控效率,进一步提高偏振调控器件的性能。

参考文献:

[1] 崔万照,马伟,邱乐德,等. 电磁超介质与其应用[M]. 北京:国防工业出版社,2008:8-50.

[2] Jackson J D. Classical electrodynamics[J]. 1999.

[3] Veselago V G. The electrodynamics substance with simulataneously negative value of ε and µ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[5] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

[6] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[7] Cui T J, Smith D R, Liu R. Metamaterials: theory, design and applications [M]. New York: Springer Publishing Company, 2009: 1-5.

[8] Ding J, Arigong B, Ren H, et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 2014, 4(1): 1-7.

[9] Ling Y, Huang L, Hong W, et al. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial[J]. Nanoscale, 2018, 10(41): 19517-19523.

[10] Xiong L, Ding H, Li G. Dynamically switchable multispectral plasmon-induced transparency in stretchable metamaterials[J]. Plasmonics, 2021, 16(2): 477-483.

[11] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[12] Ni X, Ishii S, Kildishev A V, et al. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light Science & Applications, 2013, 2(4): e72.

[13] Karimi E, Schulz S A, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, Applications, 2014, 3(5): e167.

[14] Shaltout A, Liu J, Kildishev A, et al. Photonic spin hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2015, 2(10): 860-863.

[15] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

[16] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

[17] Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165-171.

[18] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

[19] Woo J M, Hussain S, Jang J H. A terahertz in-line polarization converter based on through-via connected double layer slot structures[J]. Scientific Reports, 2017, 7(1): 1-8.

[20] Vasić B, Zografopoulos D C, Isić G, et al. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals[J]. Nanotechnology, 2017, 28(12): 124002.

[21] Zhang C, Pfeiffer C, Jang T, et al. Breaking malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface[J]. Laser & Photonics Reviews, 2016, 10(5): 791-798.

[22] Frese D, Wei Q, Wang Y, et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 2019, 19(6): 3976-3980.

[23] Shen B, Wang P, Polson R, et al. Ultra-high-efficiency metamaterial polarizer[J]. Optica, 2014, 1(5): 356-360.

[24] Mun S E, Hong J, Yun J G, et al. Broadband circular polarizer for randomly polarized light in few-layer metasurface[J]. Scientific Reports, 2019, 9(1): 1-8.

[25] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399.

[26] Kruk S, Hopkins B, Kravchenko I I, et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J]. Apl Photonics, 2016, 1(3): 030801.

[27] Ma Z, Hanham S M, Gong Y, et al. All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances[J]. Optics Letters, 2018, 43(4): 911-914.

[28] Gao S, Park C S, Lee S S, et al. All-dielectric metasurface for simultaneously realizing polarization rotation and wavefront shaping for visible light[J]. Nanoscale, 2019, 11(9): 4083-4090.

[29] Zahid A, Khaliq H S, Zubair M, et al. Asymmetric transmission through single-layered all-dielectric metasurface[C]. 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2020: 26-30.

[30] Xia R, Jing X, Zhu H, et al. Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region[J]. Optics Communications, 2017, 383: 310-315.

[31] Liu Z, Li Z, Liu Z, et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. Acs Photonics, 2017, 4(8): 2061-2069.

[32] Guan S, Cheng J, Chen T, et al. Widely tunable polarization conversion in low-doped graphene-dielectric metasurfaces based on phase compensation[J]. Optics Letters, 2020, 45(7): 1742-1745.

[33] Zhang H, Liu Y, Liu Z, et al. Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors[J]. Optics Express, 2021, 29(1): 70-81.

[34] Zhang L L, Li P, Song X W. Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface[J]. Chinese Physics B, 2021, 30(12): 127803.

[35] Shang X J, Zhai X, Wang L L, et al. Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces[J]. Applied Physics Express, 2017, 10(5): 052602.

[36] Tang D F, Wang C, Pan W K, et al. Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band[J]. Optics Express, 2017, 25(10): 11329-11339.

[37] Ren Y, Jiang C, Tang B. Asymmetric transmission in bilayer chiral metasurfaces for both linearly and circularly polarized waves[J]. JOSA B, 2020, 37(11): 3379-3385.

[38] Pan W, Kang Y, Wang C, et al. All-dielectric metasurface realizing giant asymmetric transmission for linearly polarized wave[J]. Optics Communications, 2018, 407: 83-86.

[39] Liu W, Wu W, Huang L, et al. Dual-band asymmetric optical transmission of both linearly and circularly polarized waves using bilayer coupled complementary chiral metasurface[J]. Optics Express, 2019, 27(23): 33399-33411.

[40] Dai L, Zhang Y, O'Hara J F, et al. Controllable broadband asymmetric transmission of terahertz wave based on dirac semimetals[J]. Optics Express, 2019, 27(24): 35784-35796.

[41] Wang R, Wu Q, Cai W, et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface[J]. ACS Photonics, 2019, 6(7): 1774-1779.

[42] Ba C, Huang L, Liu W, et al. Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings[J]. Optics Express, 2019, 27(18): 25107-25118.

[43] Zhang Y , Lan Y , Li X , et al. Dual functionality of a single-layer metasurface: polarization rotator and polarizer[J]. Journal of Optics, 2020, 22(3): 035101.

[44] Ma Z, Li Y, Li Y, et al. All-dielectric planar chiral metasurface with gradient geometric phase[J]. Optics Express, 2018, 26(5): 6067-6078.

[45] Zhu L, Dong L, Guo J, et al. Polarization conversion based on mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface[J]. Plasmonics, 2018, 13(6): 1971-1976.

[46] Rao Y, Pan L, Ouyang C, et al. Asymmetric transmission of linearly polarized waves based on mie resonance in all-dielectric terahertz metamaterials[J]. Optics Express, 2020, 28(20): 29855-29864.

[47] Cai X, Li Z, Kong Y, et al. Tunable polarization rotation using non-chiral all-dielectric metasurfaces[J]. Optik, 2020, 207: 163769.

[48] Li Z, Cai X, Huang L, et al. Controllable polarization rotator with broadband high transmission using all-dielectric metasurfaces[J]. Advanced Theory and Simulations, 2019, 2(9): 1900086.

[49] 马科斯·玻恩,埃米尔·沃耳夫. 光学原理[M]. 北京:电子工业出版社, 2009:20-27.

[50] 梁铨廷. 物理光学.第 3 版[M]. 北京:电子工业出版社, 2008:57-62.

[51] 梁铨廷. 物理光学.第 3 版[M]. 北京:电子工业出版社, 2008:304-326.

[52] Terekhov P D, Babicheva V E, Baryshnikova K V, et al. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect[J]. Physical Review B, 2019, 99(4): 045424.

[53] Alaee R, Rockstuhl C, Fernandez-Corbaton I. An electromagnetic multipole expansion beyond the long-wavelength approximation[J]. Optics Communications, 2018, 407: 17-21.

[54] 张彤,王琦龙,张晓阳.等离激元学基础与运用[M]. 南京:东南大学出版社, 2014:14-25.

[55] Lu X, Rycenga M, Skrabalak S E, et al. Chemical synthesis of novel plasmonic nanoparticles[J]. Annual Review of Physical Chemistry, 2009, 60: 167-192.

[56] Mie G. Beiträge zur Optik trüber Medien, Speziell kolloidaler metallösungen[J]. Annalen Der Physik, 1908, 330(3): 377-445.

[57] Evlyukhin A B, Chichkov B N. Multipole decompositions for directional light scattering[J]. Physical Review B, 2019, 100(12): 125415.

[58] Chen X, Zhou Y, Ma X, et al. Polarization conversion in anisotropic dielectric metasurfaces originating from bound states in the continuum[J]. Optics Letters, 2021, 46(17): 4120-4123.

[59] Terekhov P D, Baryshnikova K V, Shalin A S, et al. Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution[J]. Optics Letters, 2017, 42(4): 835-838.

中图分类号:

 TB383    

条码号:

 002000064186    

馆藏号:

 TD10052409    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式