- 无标题文档
查看论文信息

中文题名:

 

玻璃固化过程中硫酸盐对Tc/Re挥发的影响研究

    

姓名:

 彭来康    

学号:

 1049721900560    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 核废物玻璃固化    

第一导师姓名:

 徐凯    

第一导师院系:

 材料科学与工程学院    

完成日期:

 2022-06-12    

答辩日期:

 2022-05-19    

中文关键词:

 

核废物 ; Tc/Re ; 玻璃固化 ; 硫酸盐 ; 挥发

    

中文摘要:

99Tc由于半衰期长(~2.1×105年)、裂变产额高(~6.1%)、主要存在形式TcO4-易随地下水迁移等性质是核废物中的重要污染元素。而玻璃固化过程中Tc(VII)的高温挥发特性一直是固化含Tc核废物关注的重点。不同源项核废物玻璃固化过程中,Tc/Re呈现不同的挥发率(30%-80%),表明核废物化学组成对Tc/Re挥发的影响至关重要。硫酸盐作为核废物中重要的无机盐组成,是影响玻璃固化过程中Tc/Re挥发的关键因素。然而由于核废物组成复杂,高温过程中各组分间的相互作用与影响极其复杂,硫酸盐对Tc的挥发机理仍不清晰。

本文通过简化组成设计,以Re作为Tc的非放射性替代元素,首先研究了简化熔盐体系(SiO2-KReO4-K2SO4)中硫酸盐对Re挥发行为的影响。其次,在简化硼硅酸盐玻璃熔体中,研究了硫酸盐对Re挥发的影响规律。最后,通过模拟核废物玻璃固化实验,分析了S与Re在玻璃熔体中的竞争机制,为玻璃固化过程中控制Tc/Re的挥发提供了理论依据。主要研究成果如下:

(1)在SiO2-KReO4-K2SO4熔盐体系中,发现KReO4和K2SO4在升温过程形成共熔体,当Re/S≥1.80(Re与S的质量比)时,液相线温度高于KReO4挥发温度,生成KReO4(g)的反应速率无明显变化,硫酸盐的存在对Re的挥发基本无影响;当Re/S<1.80时,液相线温度与KReO4挥发温度相近,加快了生成KReO4(g)的反应速率,促进Re的挥发。

(2)在简化硼硅酸盐玻璃体系中,Re在玻璃熔体中的挥发随硫酸盐含量的升高而加剧,利用阿伦尼乌斯方程拟合发现Re挥发的表观活化能随硫酸盐含量的升高而降低;并利用修正后的等温挥发模型拟合发现Re扩散系数随硫酸盐含量的升高而增大。

(3)在模拟核废物玻璃熔体中,向Re饱和玻璃掺入过量Na2SO4时,有KReO4的析出,玻璃熔体中Re含量降低,源于SO42-在进入玻璃网络结构时与ReO4-存在竞争机制,加剧了Re的挥发。

参考文献:

[1] 田慧芳. 全球核能发展的现状与趋势[J]. 世界知识, 2022, 4: 48-50.

[2] 张海军, 高彬, 李鸿鹏. 碳中和下核能与新能源协同发展前景分析[J]. 中国核工业, 2022, 1: 32-34.

[3] 中国核能行业协会发布2021年1-12月全国核电运行情况[J]. 绿叶, 2022 (Z1): 10.

[4] 张蕴. 双碳目标下我国核电发展趋势分析[J]. 核科学与工程, 2021, 41 (06): 1347-1351.

[5] Icenhower J P, Qafoku N P, Martin W J, et al. The geochemistry of technetium: A summary of the behavior of an artificial element in the natural environment, PNNL-18139[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2008.

[6] Vienna J D, Nuclear waste vitrification in the United States: recent developments and future options[J]. International Journal of Applied Glass Science, 2010, 1 (03): 309-321.

[7] Schonewill P P, Daniel R C, Russell R L, et al. Development of an S-saltcake stimulant using cross flow filtration as a validation technique[J]. Separation Science and Technology, 2012, 47 (14-15): 2098-2107.

[8] Abramowitz H, Brandys M, Cecil R, et al. Technetium retention in WTP LAW glass with recycle flow-sheet DM10 melter testing, VSL-12R2640-1[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2008.

[9] Anders E. Technetium and astatine chemistry[J]. Annual Review Nuclear Science, 1959, 9: 203-220.

[10] Darab J, Smith P A. Chemistry of technetium and rhenium species during low-level radioactive waste vitrification[J]. Chemistry of Materials, 1996, 8: 1004-1021.

[11] 袁涛, 王晓宇, 栗再新, 等. 核废物处理途径的探讨[J]. 科学技术与工程, 2004, 4 (10): 861-867.

[12] 徐凯. 核工业可持久发展的基石核废料科学管理与处置[D]. 中国材料选展, 2015, 34 (02): 173-173.

[13] Ojovan M I, Lee W E. An introduction to nuclear waste immobilization[M]. Amsterdam: Elsevier, 2005.

[14] 罗上庚. 放射性废物概论[M]. 原子能出版社, 2003.

[15] 郝卿. 核废料处理方法及管理策略研究[D]. 北京: 华北电力大学, 2013.

[16] 沈晓冬, 严生, 吴学权, 等. 放射性废物水泥固化的理论基础、研究现状及对水泥化学研究的思考[J]. 硅酸盐学报, 1994 (02): 181-187.

[17] 姜自超, 丁建华, 张时豪, 等. 水泥及其复合体系固化放射性核废物研究现状[J]. 当代化工, 2017, 46 (01): 141-144.

[18] Li J F, Chen L, Wang J L. Solidification of radioactive wastes by cement-based materials[J]. Progress in Nuclear Energy, 2021, 141: 103957.

[19] Okada K, Nur R M, Fujii Y. The formation of explosive compounds in bitumen/nitrate mixtures[J]. Journal of Hazardous Materials, 1999, 69 (03): 245-256.

[20] Awwal M A, Guzella M F R, Silva T V. Chemical treatment of simulated solution of evaporator concentrate for immobilization in bitumen[J]. Waste Management, 1996, 16 (04): 251-256.

[21] 龚恒风, 马俊平, 李公平, 等. 人造岩石固化体的研究现状[J]. 甘肃科学学报, 2009, 21 (04): 150-155.

[22] 车春霞, 滕元成, 桂强. 放射性废物固化处理的研究及应用现状[J]. 材料导报, 2006 (02): 94-97.

[23] 钱敏, 凡思军, 薛天锋, 等. 高放废液硼硅酸盐玻璃固化配方研究进展[J]. 硅酸盐学报, 2021, 49 (10): 2251-2265.

[24] 徐凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35 (07): 481-488.

[25] Hrma P. Retention of halogens in waste glass, PNNL-19361[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2004.

[26] Naline S, Gouyaud F, Robineau V, et al. Cold crucible retrofit[J]. Nuclear Engineering International, 2010, 56 (04): 13-17.

[27] Ojovan M I, Lee W E, Kalmykov S N. An introduction to nuclear waste immobilization[M]. Oxford: Elsevier, 2019.

[28] 柳伟平, 刘玉昆, 徐东林, 等. 高放废液玻璃固化贵金属沉积研究进展[J]. 核化学与放射化学, 2021, 43 (06): 453-458.

[29] Gin S, Abdelouas A, Criscenti L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Materials Today, 2013, 16 (06): 243-248.

[30] Stefanovsky S V, Lebedev V V, Ptashkin A G, et al. Cold crucible inductive melting technology application to vitrification and ceramization of high level and actinide wastes[J]. Advances in Science and Technology, 2010, 73: 183-193.

[31] 柳伟平, 高振, 范承蓉, 等. 法国高放废液玻璃固化技术最新进展[J]. 辐射防护, 2014, 34 (06): 404-406.

[32] Caurant D, Loiseau P, Majerus O, et al. Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes[M]. Paris: Nova Science Publishers, 2009.

[33] Quang R D, Mougnard P, Ladirat C, et al. Review of the French vitrification program[M]. Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries IX, 2004, 155: 197-215.

[34] Jantzen C M. Development of glass matrices for high level radioactive wastes[J]. Handbook of Advanced Radioactive Waste Conditioning Technologies, 2011: 230-292.

[35] Harrison M. The effect of composition on short and long-term durability of UK HLW glass[J]. Procedia Materials Science, 2014, 17: 186-192.

[36] 陈亚君, 陆燕. 国外高放废液玻璃固化技术概览[J]. 国外核新闻, 2018 (02): 27-31.

[37] 罗上庚. 玻璃固化国际现状及发展前景[J]. 硅酸盐通报, 2003, 1: 42-48.

[38] Stefanovsky S V, Skvortsov M V, Stefanovsky O I, et al. Development and characterization of glassy materials for HLW immobilization with datolite and bentonite as glass forming additives[J]. MRS Advances, 2017, 2 (10): 569-575.

[39] Luckscheiter B, Nesovic M. Development of glasses for the vitrification of high-level liquid waste (HLLW) in a joule heated ceramic melter[J]. Waste Management, 1996, 16 (07): 571-578.

[40] Dardenne K, González-Robles E, Rothe J, et al. XAS and XRF investigation of an actual HAWC glass fragment obtained from the karlsruhe vitrification plant (VEK)[J]. Journal of Nuclear Materials, 2015, 460: 209-215.

[41] 宋玉乾, 高振, 吉头杰, 等. 美国高放废液玻璃固化概述[J]. 辐射防护, 2014, 34 (05): 333-336.

[42] Kroll J O, Nelson Z J, Skidmore C H, et al. Formulation of high-Al2O3 waste glasses from projected Hanford waste compositions[J]. Journal of Non-Crystalline Solids, 2019, 517: 17-25.

[43] Smith G L, Lang J B, Kim D S, et al. Silicate based glass formulations for immobilization of U. S. defense wastes using cold crucible induction melters, PNNL-23288[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2014.

[44] Kim D S, Schweiger M J, Carmen P R, et al. Formulation and characterization of waste glasses with varying processing temperature, PNNL-20774[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2011.

[45] 邵辅义, 严家德, 张宝善, 等. 含硫酸盐模拟高放废液罐式法玻璃固化中间装置中硫的分布[J]. 原子能科学技术, 1995, 29 (03): 253-261.

[46] 刘丽君. 我国高放废液玻璃固化技术四十年的发展[C]. 中国核科学技术进展报告, 2015: 481-485.

[47] 王宇, 邢庆立, 孟保健, 等. 高放废物玻璃固化技术研究进展[J]. 中国建材科技, 2020, 29 (04): 26-28.

[48] Kaplan D I. Influence of surface charge of an Fe-oxide and an organic matter dominated soil on iodide and pertechnetate sorption[J]. Radiochimica Acta, 2003, 91 (03): 173-178.

[49] Burton B P, Radivojevic I, Mcgregor D, et al. Photoreduction of Tc-99 pertechnetate by nanometer-sized metaloxides: new strategies for formation and sequestration of low-valent technetium[J]. Journal of the American Ceramic Society, 2011, 133 (46): 18802-18815.

[50] Li D, Kaplan D I, Knox A S, et al. Aqueous 99Tc, 129I and 137Csremoval from contaminated groundwater and sediments using highly effective low-cost sorbents[J]. Journal of Environmental Radioactivity, 2014, 136: 56-63.

[51] Mann F M. Hanford immobilized low-activity tank waste performance assessment, Fluor Daniel Hanford Inc[R]. Richland, WA, USA, 1998.

[52] Pegg I L. Behavior of technetium in nuclear waste vitrification processes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305 (01): 287-292.

[53] Um W, Chang H, Icenhower J P, eat al. Iron oxide waste form for stabilizing 99Tc[J]. Journal of Nuclear Materials, 2012, 429: 201-209.

[54] Shaw, G. Radioactivity in the terrestrial environment[J]. Modelling Radioactivity in the Environment, 2007, 35 (03): 87-108.

[55] MacKenzie, J M, Canil, D. Experimental constraints on the mobility of rhenium in silicate liquids[J]. Geochimica Et Cosmochimica Acta, 2006, 70 (20): 5236-5245.

[56] Wang H, Wu T, Chen J, et al. Efect of humic acid on the diffusion of ReO4- in GMZ bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (01): 187-191.

[57] Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances inhalides and chaleogenides[J]. Acta Crystallographica Section A, 1976, 32 (05): 751-767.

[58] 徐凯, 赵崇, 牛晨晨, 等. 一种用于固化易挥发核素Tc/Re的低熔点玻璃及其制备、使用方法[P]. CN109721242A, 2019.

[59] Vida J. Behavior of technetium during the treatment of high-level radioactive waste[D]. Karlsruhe, Germany: Karlsruhe Nuclear Research Center, 1989.

[60] Schwochau K. The present status of technetium chemistry[J]. Radiochimica Acta, 1983, 32 (1-3): 139-152.

[61] Rouschias G. Recent advances in the chemistry of rhenium[J]. Chemical Reviews, 1974, 5: 531-566.

[62] Migge H. Simultaneous evaporation of Cs and Tc during vitrification-A thermochemical approach[J]. Materials Research Society Symposium Proceedings, 1990, 176: 411-417.

[63] Kim D S, Soderquist C Z, Icenhower J P, et al. Tc reductant chemistry and crucible melting studies with simulated Hanford low-activity waste, PNNL-15131[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2005.

[64] Pokorny R, Hrma P. Mathematical modeling of cold cap[J]. Journal of Nuclear Materials, 2012, 429: 245-256.

[65] Rodriguez C, Chun J, Schweiger M, et al. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification[J]. Thermochimica Acta, 2014, 592: 86-92.

[66] Pokorny R, Hilliard Z J, Dixon D R, et al. One-dimensional cold cap model for melters with bubblers[J]. Journal of the American Ceramic Society, 2015, 98 (10):3112-3118.

[67] Marcial J, Chun J, Hrma P, et al. Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass[J]. Environmental Science and Technology, 2014, 48: 12173-12180.

[68] Xu K, Hrma P, Rice J, et al. Melter feed reactions at T≤700 oC for nuclear waste vitrification[J] Journal of the American Ceramic Society, 2015, 98: 3105-3111.

[69] George J L, Cholsaipant P, Kim D S, et al. Effect of sulfate sequestration by Ba-Sn composite material on Re retention in low-activity waste glass[J]. Journal of Non-Crystalline Solids, 2019, 510: 151-157.

[70] Jin T, Kim D S, Tucker A E, et al. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99[J]. Journal of Non-Crystalline Solids, 2015, 425: 28-45.

[71] Xu K, Pierce D A, Hrma P, et al. Rhenium volatilization in waste glass[J]. Journal of Nuclear Materials, 2015, 464: 382-388.

[72] Jin T, Kim D S, Schweiger M J, Effect of sulfate on rhenium partitioning during melting of low activity waste glass feeds[J]. WM Symposia (WM 2014): 40 Years of Meeting Global Radioactive Waste Management Challenges. Phoenix, Arizona, Paper No. 14116.

[73] Jin T, Kim D S, Tucker A E. Effects of sulfate on rhenium incorporation into low-activity waste glass[J]. Journal of Non-Crystalline Solids, 2019, 521: 119528.

[74] Wang Z, Yang W, Liu H, et al. Thermochemical behavior of three sulfates (CaSO4, K2SO4 and Na2SO4) blended with cement raw materials (CaO-SiO2-Al2O3-Fe2O3) at high temperature[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104617.

[75] Li J, Hong L, Li J, et al. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite[J]. Journal of the European Ceramic Society, 2009, 29: 2929-2936.

[76] Kim D S, Kruger A A. Volatile species of technetium and rhenium during waste vitrification[J]. Journal of Non-Crystalline Solids, 2018, 481: 41-50.

[77] Raman, K, Mishra, et al. Role of sulfate in structural modifications of sodium barium borosilicate glasses developed for nuclear waste immobilization[J]. Journal of the American Ceramic Society, 2008, 91 (12): 3903-3907.

[78] Jantzen C M, Smith M E, Peeler D K. Dependency of sulfate solubility on melt composition and melt polymerization[J]. Ceramic Transactions, 2004, 168: 141-152.

[79] Vienna J D, Hrma P R, Buchmiller W C, et al. Preliminary investigation of sulfur loading in Hanford LAW glass[J]. Office of Scientific and Technical Information Technical Reports, 2004.

[80] Miyake M, Iwai S I. Phase transition of potassium sulfate, K2SO4(III); thermodynamical and phenomenological study[J]. Physics and Chemistry of Minerals, 1981, 7 (05): 211-215.

[81] Rowe J J, Morey G W, Hansen I D. The binary system K2SO4-CaSO4[J] Journal of Inorganic and Nuclear Chemistry, 1965, 27: 53-58.

[82] Yadav A K, Singh P. A review of the structures of oxide glasses by raman spectroscopy[J]. RSC Advances, 2015: 67583-67609.

[83] Goel A, Mccloy J S, Jr C, et al. Structure of rhenium-containing sodium borosilicate glass[J]. International Journal of Applied Glass Science, 2013, 4 (01): 42-52.

[84] Gassman P L, Mccloy J S, Soderquist C Z, et al. Raman analysis of perrhenate and pertechnetate in alkali salts and borosilicate glasses[J]. Journal of Raman Spectroscopy, 2014, 45 (01): 139-147.

[85] Mccloy J S, Riley B J, Goel A, et al. Rhenium solubility in borosilicate nuclear waste glass: Implications for the processing and immobilization of technetium-99[J]. Environmental Science and Technology, 2012, 46 (22): 12616-12622.

[86] Cui Y R, Fan H Y, Guo Z L, et al. Volatilization behaviour and volatilization kinetics of CaF2-Na2O-CaO-SiO2-Al2O3-MgO-B2O3 synthetic mould flux[J]. Journal of Iron and Steel Research, 2019, 26 (04): 412-421.

[87] Cable M. Kinetics of volatilization of sodium borate melts[J]. Borate Glasses, 1978, 12: 399-411.

[88] 王孝强, 庹先国, 周慧, 等. 高硫高钠高放废液玻璃固化配方研究[J]. 核化学与放射化学, 2013, 35 (03): 180-192.

中图分类号:

 TL941    

条码号:

 002000034547    

馆藏号:

 TD10053281    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式