- 无标题文档
查看论文信息

中文题名:

 

低速重载下水润滑轴承摩擦振动特征识别研究

    

姓名:

 李瑞卿    

学号:

 1049732004004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082300    

学科名称:

 工学 - 交通运输工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 交通与物流工程学院    

专业:

 交通运输    

研究方向:

 交通装备运用工程与智能化    

第一导师姓名:

 金勇    

第一导师院系:

 交通与物流工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-19    

中文关键词:

 

水润滑轴承 ; 摩擦振动 ; 经验模态分解 ; 时频分析

    

中文摘要:

随着水下航行器的发展,水润滑轴承得到了广泛应用。水润滑轴承由于极端工况下产生的摩擦振动会降低水下航行器的隐蔽性和可靠性,且水润滑轴承摩擦振动产生机理尚不明确。因此,开展轴承摩擦振动特征识别研究具有非常重要的工程意义。本文通过试验与仿真对比验证了试验因素对水润滑轴承摩擦振动信号的影响,提出一种基于经验模态分解和时频域分析技术的水润滑轴承摩擦振动特征识别方法,为研究试验因素对轴承摩擦振动的影响提供理论基础。论文主要研究内容与结论如下: (1)开展了水润滑轴承振动特性试验。通过振动和停机试验比较多个轴承的振动特性,分析试验因素对于轴承振动特性的影响,并筛选出摩擦振动试验轴承。结果表明,PA轴承的振动性能最差,且在停机试验中出现摩擦振动现象。 (2)进行了水润滑振动特性有限元仿真分析。根据试验数据建立水润滑轴承有限元仿真模型,通过仿真结果验证试验因素对于轴承摩擦振动的影响。结果表明,摩擦振动信号受到比压与温度影响较大,水润滑轴承仿真结果与试验结果趋势相同。 (3)提出了水润滑轴承摩擦振动特征识别方法。通过对摩擦振动机理进行分析,确定摩擦振动信号,根据摩擦振动信号的非稳态等特性,提出一种基于经验模态分解和时频特性分析的水润滑轴承摩擦振动特征识别方法。结果表明,该方法可以识别摩擦振动特征信号并提取出多个特征值,反映试验因素对于摩擦振动的影响。 (4)开展了水润滑轴承摩擦振动特征识别试验研究。试验研究结果表明,比压和温度均会对试验轴承摩擦振动产生较大影响,流量则对轴承摩擦振动几乎无影响;通过分析标准差,偏度,裕度因子,波形因子的单调变化映射试验轴承发生摩擦振动的特征变化。随着比压的升高,时域中的标准差和偏度逐渐增加,波形因子和裕度因子单调下降;通过对IMF能量,标准差,偏度的拐点和重心频率突增点的判断,得出轴承产生摩擦振动的临界点。

参考文献:

[1] Sun Y, Yan X, Yuan C, et al. Insight into tribological problems of green ship and correspond ding research progresses[J]. Friction, 2018, 6(4): 472-483.

[2] Xiang G, Yang T, Guo J, et al. Optimization transient wear and contact performances of water-lubricated bearings under fluid-solid-thermal coupling condition using profile modification[J]. Wear, 2022: 204379.

[3] 王路才,周其斗,杨常青. 推力轴承轴向刚度对潜艇整艇结构振动与声辐射的影响[J]. 舰船科学技术,2020, 42(19): 6-10, 46.

[4] 徐野,熊鹰,黄政. 螺旋桨激励水下壳体振动噪声数值研究[J]. 振动与冲击,2020, 39(2): 86-91, 122.

[5] Song Y, Wen J, Yu D, et al. Reduction of vibration and noise radiation of an underwater vehicle due to propeller forces using periodically layered isolators[J]. Journal of Sound and Vibration, 2014, 333(14): 3031-3043.

[6] Wang H, Liu Z, Zou L, et al. Influence of both friction and wear on the vibration of marine water lubricated rubber bearing[J]. Wear, 2017, 376: 920-930.

[7] Ouyang W, Cheng Q, Jin Y, et al. Lubrication Performance Distribution of Large Aspect Ratio Water-Lubricated Bearings Considering Deformation and Shaft Bending[J]. Tribology Transactions, 2021, 64(4): 730-743.

[8] Ouyang W, Liu Q, Cheng Q, et al. Identification of Distributed Dynamic Characteristics of Journal Bearing with Large Aspect Ratio under Shaft Bending[J]. Journal of Marine Science and Engineering, 2022, 10(5): 658.

[9] Litwin W. Influence of local bush wear on water lubricated sliding bearing load carrying capacity[J]. Tribology International, 2016, 103: 352-358.

[10] Wu C, Chen F, Long X. The self-excited vibration induced by friction of the shaft-hull coupled system with the water-lubricated rubber bearing and its stick-slip phenomenon[J]. Ocean Engineering, 2020, 198: 107002.

[11] Jin D, Xiao K, Xiang G, et al. A simulation model to comparative analysis the effect of texture bottom shape on wear and lubrication performances for micro-groove water lubricated bearings[J]. Surface Topography: Metrology and Properties, 2021, 9(2): 025009.

[12] Liang X, Yan X, Ouyang W, et al. Experimental research on tribological and vibration performance of water-lubricated hydrodynamic thrust bearings used in marine shaft-less rim driven thrusters[J]. Wear, 2019, 426: 778-791.

[13] Wang H, Liu Z, Zou L, et al. Influence of both friction and wear on the vibration of marine water lubricated rubber bearing[J]. Wear, 2017, 376: 920-930.

[14] Zhou G, Wang J, Han Y, et al. An experimental study on film pressure circumferential distribution of water-lubricated rubber bearings with multiple grooves[J]. Tribology Transactions, 2017, 60(3): 385-391.

[15] Litwin W. Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties[J]. Polish Maritime Research, 2010, 17(4 (67)): 39-45.

[16] Litwin W. Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing[J]. Tribology International, 2015, 82: 153-161.

[17] Yang C, Zhou X, Huang J, et al. Effects of sediment size and type on the tribological properties of NBR in water[J]. Wear, 2021, 477: 203800.

[18] Wang C, Bai X, Guo Z, et al. A strategy that combines a hydrogel and graphene oxide to improve the water-lubricated performance of ultrahigh molecular weight polyethylene[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106207.

[19] Zhou G, Wu K, Pu W, et al. Tribological modification of hydrogenated nitrile rubber nanocomposites for water-lubricated bearing of ship stern shaft[J]. Wear, 2022, 504: 204432.

[20] Qu C, Wang T, Wang Q, et al. A novel ternary interpenetrating polymer networks based on NBR/PU/EP with outstanding damping and tribological properties for water-lubricated bearings[J]. Tribology International, 2022, 167: 107249.

[21] Orndorff Jr R L. WATER‐LUBRICATED rubber bearings, history and new developments[J]. Naval Engineers Journal, 1985, 97(7): 39-52.

[22] Zhimin Y, Xincong Z, Hongling Q, et al. Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material[J]. Wear, 2015, 332: 872-878.

[23] Demirci M T, Düzcükoğlu H. Wear behaviors of Polytetrafluoroethylene and glass fiber reinforced Polyamide 66 journal bearings[J]. Materials & Design, 2014, 57: 560-567.

[24] Wu Z, Guo Z, Yuan C. Influence of polyethylene wax on wear resistance for polyurethane composite material under low speed water-lubricated conditions[J]. Wear, 2019, 426: 1008-1017.

[25] Xiong D, Ge S. Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions[J]. Wear, 2001, 250(1-12): 242-245.

[26] Bhushan B, Stick-slip induced noise generation in water-lubricated compliant rubber bearings[J]. Journal of Lubrication Technology, 1980, 102(2), 201-210.

[27] Yang X, Zhang Z, Zhang T, et al. Improved tribological and noise suppression performance of graphene/nitrile butadiene rubber composites via the exfoliation effect of ionic liquid on graphene[J]. Journal of Applied Polymer Science, 2020, 137(46): 49513.

[28] Hu S, Liu Y. Disc brake vibration model based on Stribeck effect and its characteristics under different braking conditions[J]. Mathematical Problems in Engineering, 2017, 1-13.

[29] Viswanathan K, Sundaram N K. Distinct stick-slip modes in adhesive polymer interfaces[J]. Wear, 2017, 376: 1271-1278.

[30] Tison T, Heussaff A, Massa F, et al. Improvement in the predictivity of squeal simulations: Uncertainty and robustness[J]. Journal of Sound and Vibration, 2014, 333(15): 3394-3412.

[31] Fukahori Y, Gabriel P, Busfield J J C. How does rubber truly slide between Schallamach waves and stick–slip motion[J]. Wear, 2010, 269(11-12): 854-866.

[32] Han D X, Wang G, Ren J L, et al. Stick-slip dynamics in a Ni62Nb38 metallic glass film during nanoscratching[J]. Acta Materialia, 2017, 136: 49-60.

[33] Audry M C, Frétigny C, Chateauminois A, et al. Slip dynamics at a patterned rubber/glass interface during stick-slip motions[J]. The European Physical Journal E, 2012, 35: 1-7.

[34] Thörmann S, Markiewicz M, von Estorff O. On the stick-slip behaviour of water-lubricated rubber sealings[J]. Journal of Sound and Vibration, 2017, 399: 151-168.

[35] Zhou M, Wang Y, Huang Q. Study on the stability of drum brake non-linear low frequency vibration model[J]. Archive of Applied Mechanics, 2007, 77: 473-483.

[36] Tuononen A J. Digital image correlation to analyse stick–slip behaviour of tyre tread block[J]. Tribology International, 2014, 69: 70-76.

[37] 闫志敏,周新聪,邱晓峰,等. 一种基于机器视觉技术的水润滑橡胶艉轴承振动测量方法[J]. 船海工程,2017, 46(1): 62-65, 68.

[38] 姚世卫,杨俊,张雪冰,等. 水润滑橡胶轴承振动噪声机理分析与试验研究[J]. 振动与冲击,2011, 30(02): 214-216.

[39] Kinkaid N M, O'Reilly O M, Papadopoulos P. Automotive disc brake squeal[J]. Journal of Sound and Vibration, 2003, 267(1): 105-166.

[40] Hochlenert D. Nonlinear stability analysis of a disk brake model[J]. Nonlinear Dynamics, 2009, 58: 63-73.

[41] Nagy L I, Cheng J, Hu Y K. A new method development to predict brake squeal occurrence[J]. SAE Transactions, 1994: 416-423.

[42] Peng E, Liu Z, Zhang S, et al. Analysis on vibration & noise mechanism of marine rubber stern tube bearings[J]. International Journal of Advancements in Computing Technology, 2012, 4(15): 52-55.

[43] Peng E, Liu Z, Zhou X, et al. Study on nonlinear friction-induced vibration in water-lubricated rubber stern tube bearings[J]. The Open Mechanical Engineering Journal, 2012, 6(1): 21-26.

[44] Xiang G, Yang T, Guo J, et al. Optimization transient wear and contact performances of water-lubricated bearings under fluid-solid-thermal coupling condition using profile modification[J]. Wear, 2022, 502: 204379.

[45] Chen S, Xiang G, Fillon M, et al. On the tribo-dynamic behaviors during start-up of water lubricated bearing considering imperfect journal[J]. Tribology International, 2022, 174: 107685.

[46] 孙迪,李国宾,魏海军,等. 磨合磨损过程中摩擦振动变化规律研究[J].哈尔滨工程大学学报,2015, 36(02): 166-170.

[47] 李国宾,任宗英,王宏志,等. 摩擦振动信号谐波小波包特征提取[J]. 摩擦学学报,2011, 31(5): 452-456.

[48] Chen G X, Zhou Z R. Time–frequency analysis of friction-induced vibration under reciprocating sliding conditions[J]. Wear, 2007, 262(1-2): 1-10.

[49] Cohen L, Galleani L, Hedges R, et al. Time–frequency analysis of a variable stiffness model for fault development[J]. Digital Signal Processing, 2002, 12(2-3): 429-440.

[50] Menon A K, Boutaghou Z E. Time–frequency analysis of tribological systems—part I: implementation and interpretation[J]. Tribology International, 1998, 31(9): 501-510.

[51] Charley J, Bodovillé G, Degallaix G. Analysis of braking noise and vibration measurements by time—frequency approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(12): 1381-1400.

[52] Neild S A, McFadden P D, Williams M S. A review of time-frequency methods for structural vibration analysis[J]. Engineering Structures, 2003, 25(6): 713-728.

[53] 黄朝明,于洪亮,关德林,等. 摩擦振动时频图像特征提取[J]. 振动与冲击,2012, 31(7): 46-49, 62.

[54] 孙迪. 往复滑动摩擦副磨合过程摩擦振动非线性特征研究[D]. 大连:大连海事大学,2015.

[55] Huang Q, Guo Z, Wu Z, et al. Insight into the tribological performance of polyurethane composites under high temperature water lubrication[J]. Tribology International, 2021, 155: 106784.

[56] Liang X, Guo Z, Tian J, et al. Development of modified polyacrylonitrile fibers for improving tribological performance characteristics of thermoplastic polyurethane material in water‐lubricated sliding bearings[J]. Polymers for Advanced Technologies, 2020, 31(12): 3258-3271.

[57] Liu X, Guo Z, Bai D, et al. Study on the mechanical properties and defect detection of low alloy steel weldments for large cruise ships[J]. Ocean Engineering, 2022, 258: 111815.

[58] Liu Q, Ouyang W, Cheng Q, et al. Influences of bidirectional shaft inclination on lubrication and dynamic characteristics of the water-lubricated stern bearing[J]. Mechanical Systems and Signal Processing, 2022, 169: 108623.

[59] 金勇,刘正林,田宇忠,刘琴华,等. 基于Pulse的船舶尾轴承振动监测[J]. 武汉理工大学学报,2010, 32(6): 84-88.

[60] Rorrer R A L, Juneja V. Friction-induced vibration and noise generation of instrument panel material pairs[J]. Tribology International, 2002, 35(8): 523-531.

[61] Nishiwaki M. Generalized theory of brake noise[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1993, 207(3): 195-202.

[62] 赵志宏. 基于振动信号的机械故障特征提取与诊断研究[D]. 北京:北京交通大学,2012.

[63] 苏文胜. 滚动轴承振动信号处理及特征提取方法研究[D]. 大连:大连理工大学,2010.

[64] 徐金梧,徐科. 小波变换在滚动轴承故障诊断中的应用[J]. 机械工程学报,1997(4): 50-55.

[65] 黄诚惕. 希尔伯特—黄变换及其应用研究[D]. 成都:西南交通大学,2006.

中图分类号:

 U664.21    

条码号:

 002000074206    

馆藏号:

 YD10002326    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式