- 无标题文档
查看论文信息

中文题名:

 

核壳金属有机框架固体电解质的可控合成和电化学性能研究

    

姓名:

 艾萨    

学号:

 2018Y90100069    

保密级别:

 公开    

论文语种:

 eng    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 固态锂电池    

第一导师姓名:

 麦立强    

第一导师院系:

 材料科学与工程学院    

第二导师姓名:

 徐林    

完成日期:

 2022-06-17    

答辩日期:

 2022-05-23    

中文关键词:

 

固态电池 ; 锂离子电池 ; 固体电解质 ; 核壳金属有机骨架 ;

    

中文摘要:

目前,智能电子、电动汽车等领域对储能产品的需求不断增长。为进一步满足市场需求,开发具有优异机械/热稳定性以及高功率和高能量密度的新型可充电电池成为必然趋势。锂离子电池(LIBs)因高能量密度、长循环稳定性和高输出功率等优点被广泛应用在日常电子产品中。虽然传统 LIBs 在室温下表现出低界面电阻和良好的离子电导率,然而,由于电解液的泄漏和挥发以及不可逆的容量衰减导致的热稳定性差和易燃爆等安全问题亟待解决。因此,基于固体电解质的LIBs因其高安全性的优势成为极具潜力的下一代可充电电池。然而,制造出具有低界面电阻、高电导率和能抑制锂枝晶的固体电解质仍然是一个长期存在的挑战。本论文提出,将核壳金属有机框架(MOF)纳米粒子用于固体电解质,以促进Li+的传输,并提高固态电解质对电极的电化学稳定性。与原始MOF材料相比,核壳MOF纳米颗粒作为固体电解质时在离子传输方面具有明显优势。同时,系统研究并揭示了每种电解质的离子传输机理。主要发现如下:

1. 使用联苯二甲酸(H2-BPDC)作为连接体,制备了核壳型MOF-in-MOF纳米粒子UIO-66@67,该材料用途广泛并展现出在储能领域实际应用的可能性。该研究工作旨在检验UIO-66@67作为一种独特的双功能电解质主体,能够提高固体电解质的离子电导率、Li+迁移数和界面稳定性。

2. 核壳UIO-66@67作为锂离子电池中一种吸附离子液体的主体材料。核壳UIO-66@67/锂离子液体(CSIL)设计中的壳结构(UIO-67)具有较大的比表面积和较大的孔径,可促进离子液体(IL)电解液的吸收,从而提高锂离子电导率。与IL离子尺寸相比,UIO-66结构的孔径更小,能够捕获体积较大的阴离子,限制阴离子的运动并促进Li+的迁移。CSIL的新颖结构设计使其能够实现高Li+迁移数(0.63),展现优异的离子电导率(2.1×10-3 S cm-1)和高初始容量(158 mAh g-1),在25 °C下循环100次后其容量保持率为99%。此外,基于CSIL的Li对称电池在1000 µA cm-2下循环1000小时后仍保持28 mV的稳定极化。

 

3. 通过控制纳米粒子的形状首次合成了一种新型仿生类脑纳米结构(BBLN)固体聚合物电解质。与传统的聚合物基复合电解质相比,这种BBLN固体聚合物电解质的制备是在聚合物电解质中加入球形核壳(UIO-66@67)填料,该球形UIO-66@67填料有利于消除聚合物电解质在凝固过程中的应力和变形,赋予BBLN固体聚合物电解质高度均匀的连续结构,应用潜力巨大。此外,球形UIO-66@67纳米粒子可显著降低聚合物电解质的结晶度,增强聚合物链的分段运动,为快速离子转移提供连续输运路径。该工作中制备的BBLN聚合物电解质表现出优异的离子电导率(9.2×10-4 S cm-1)、高锂离子迁移数(0.74)和优异的锂电极循环稳定性(室温下稳定超过6500小时)。此外,基于BBLN固体聚合物电解质组装的LIBs在25 °C下循环200次后表现出155 mAh g-1的优异容量。

4. 通过调控掺入纳米颗粒的密度合成了一种新型的异质多层结构固体电解质(HLSE)。与传统的聚合物基复合电解质相比,这种HLSE是将球形核壳UIO-66@67和无机陶瓷LLZO填料加入到聚合物电解质中制备而成。一方面,球形UIO-66@67纳米粒子利于消除聚合物电解质在凝固过程中的应力和变形,增强锂离子的迁移效率;另一方面,LLZO纳米粒子的引入可以提高固体聚合物电解质的机械强度,抑制锂枝晶的生长。因此,本工作所制备的HLSE表现出优异的离子电导率(7.1×10-4 S cm-1)、高锂迁移数(0.65),在室温1600 µA cm-2电流密度下锂-锂循环超过1650次。基于HLSE组装的LIB在25 °C循环125次后比容量仍保持在159 mAh g-1

参考文献:

[1] Goodenough JB and Park K-S. The Li-ion rechargeable battery: a perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.

[2] Gauthier M, Carney TJ, Grimaud A, et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights [J]. The journal of physical chemistry letters, 2015, 6(22): 4653-4672.

[3] Thangadurai V, Narayanan S and Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review [J]. Chemical Society Reviews, 2014, 43(13): 4714-4727.

[4] Giarola M, Sanson A, Tietz F, et al. Structure and vibrational dynamics of NASICON-type LiTi2(PO4)3 [J]. The Journal of Physical Chemistry C, 2017, 121(7): 3697-3706.

[5] Stramare S, Thangadurai V and Weppner W. Lithium lanthanum titanates: a review [J], Chemistry of materials, 2003, 15(21): 3974-3990.

[6] Li Y, Han J-T, Wang C-A, Xie H and Goodenough JB. Optimizing Li+ conductivity in a garnet framework [J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361.

[7] Zhang Z, Shao Y, Lotsch B, et al. New horizons for inorganic solid state ion conductors [J]. Energy & Environmental Science, 2018, 11(8): 1945-1976.

[8] O'Callaghan MP, Lynham DR, Cussen EJ and Chen GZ. Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln= Y, Pr, Nd, Sm-Lu) [J]. Chemistry of materials, 2006, 18(19): 4681-4689.

[9] Megahed S and Scrosati B. Lithium-ion rechargeable batteries [J]. Journal of Power Sources, 1994, 51(1-2): 79-104.

[10] Broussely M, Biensan P and Simon B. Lithium insertion into host materials: the key to success for Li ion batteries [J]. Electrochemica Acta, 1999, 45(1-2): 3-22.

[11] Von Sacken U, Nodwell E, Sundler A and Dahn J. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries [J]. Solid State Ionics, 1994, 69(3-4): 284-290.

[12] Andre D, Kim S-J, Lamp P, et al. Future generations of cathode materials: an automotive industry perspective [J]. Journal of Materials Chemistry A, 2015, 3(13): 6709-6732.

[13] Cussen EJ, Yip TW, O'Neill G and O'Callaghan MP. A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12 [J]. Journal of Solid State Chemistry, 2011, 184(2): 470-475.

[14] Chehreh Chelgani S, Rudolph M, Kratzsch R, Sandmann D and Gutzmer J. A review of graphite beneficiation techniques [J]. Mineral Processing and Extractive Metallurgy Review, 2016, 37(1): 58-68.

[15] Schmuch R, Wagner R, Hörpel G, Placke T and Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries [J]. Nature Energy, 2018, 3(4): 267-278.

[16] Wiggers H, Starke R and Roth P. Silicon particle formation by pyrolysis of silane in a hot wall gasphase reactor [J]. Chemical Engineering & Technology: industrial chemistry‐plant equipment‐process engineering‐biotechnology, 2001, 24(3): 2261-2264.

[17] Doh C-H, Park C-W, Shin H-M, et al. A new SiO/C anode composition for lithium-ion battery [J]. Journal of Power Sources, 2008, 179(1): 367-370.

[18] Takeda O, Li M, Toma T, Sugiyama K, Hoshi M and Sato Y. Electrowinning of lithium from LiOH in molten chloride [J]. Journal of The Electrochemical Society, 2014, 161(14): D820.

[19] Ryou MH, Lee YM, Lee Y, Winter M and Bieker P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating [J]. Advanced Functional Materials, 2015, 25(6): 834-841.

[20] Heine J, Krüger S, Hartnig C, Wietelmann U, Winter M and Bieker P. Coated lithium powder (CLiP) electrodes for lithium‐metal batteries [J]. Advanced Energy Materials, 2014, 4(5): 1300815.

[21] Cheng X-B, Zhang R, Zhao C-Z and Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review [J]. Chemical reviews, 2017, 117(15): 10403-10473.

[22] Tikekar MD, Choudhury S, Tu Z and Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries [J]. Nature Energy, 2016, 1(9): 1-7.

[23] Ryu J, Hong D, Lee H-W and Park S. Practical considerations of Si-based anodes for lithium-ion battery applications [J]. Nano Research, 2017, 10(12): 3970-4002.

[24] Holtstiege F, Wilken A, Winter M and Placke T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries [J]. Physical Chemistry Chemical Physics, 2017, 19(38): 25905-25918.

[25] Aravindan V, Lee YS and Madhavi S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries [J]. Advanced Energy Materials, 2017, 7(17): 1602607.

[26] Janek J and Zeier WG. A solid future for battery development [J]. Nature Energy. 2016. 1(9): 1-4.

[27] Croy JR, Abouimrane A and Zhang Z. Next-generation lithium-ion batteries: the promise of near-term advancements [J]. MRS bulletin, 2014, 39(5): 407-415.

[28] Meng YS and Arroyo-de Dompablo ME. Recent advances in first principles computational research of cathode materials for lithium-ion batteries [J]. Accounts of chemical research, 2013, 46(5): 1171-1180.

[29] Tebbe JL, Holder AM and Musgrave CB. Mechanisms of LiCoO2 cathode degradation by reaction with HF and protection by thin oxide coatings [J]. ACS applied materials & interfaces, 2015, 7(43): p. 24265-78.

[30] Gamble F, Osiecki JH, Cais M, Pisharody R, DiSalvo F and Geballe T. Intercalation complexes of lewis bases and layered sulfides: a large class of new superconductors [J]. Science, 1971, 174(4008): 493-497.

[31] Cussen EJ. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors [J]. Chemical Communications, 2006, (4): 412-413.

[32] Murugan R, Thangadurai V and Weppner W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12 [J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-77781.

[33] Dunn B, Kamath H and Tarascon J-M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334(6058): 928-935.

[34] Van Wüllen L, Echelmeyer T, Meyer H-W and Wilmer D. The mechanism of Li-ion transport in the garnet Li 5 La 3 Nb 2 O 12 [J]. Physical Chemistry Chemical Physics, 2007, 9(25): 3298-3303.

[35] O'Callaghan MP and Cussen EJ. Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3-xTa2O12 (0

[36] Shukla A and Prem Kumar T. Materials for next-generation lithium batteries [J]. Current science, 2008, 94(3): 314-331.

[37] He W, Chen Q, Zhang T, Gao Y and Cao J. Solvothermal synthesis of uniform Li3V2 (PO4)3/C nanoparticles as cathode materials for lithium ion batteries [J]. Micro & Nano Letters, 2015, 10(2): 67-70.

[38] Sun Y-K, Myung S-T, Kim M-H, Prakash J and Amine K. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core- shell structure as the positive electrode material for lithium batteries [J]. Journal of the American Chemical Society, 2005, 127(38): 13411-13418.

[39] Lim B-B, Myung S-T, Yoon CS and Sun Y-K. Comparative study of Ni-rich layered cathodes for rechargeable lithium batteries: Li[Ni0.85Co0.11Al0.04]O2 and Li[Ni0.84Co0.06Mn0.09Al0.01]O2 with two-step full concentration gradients [J]. ACS energy letters, 2016, 1(1): 283-289.

[40] Jow TR, Xu K, Borodin O and Ue M. Electrolytes for lithium and lithium-ion batteries [B], 2014, Springer.

[41] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical reviews, 2004, 104(10): 4303-4418.

[42] Aravindan V, Gnanaraj J, Madhavi S and Liu HK. Lithium‐ion conducting electrolyte salts for lithium batteries [J]. Chemistry–A European Journal, 2011, 17(51): 14326-14346.

[43] Zhang S and Jow T. Aluminum corrosion in electrolyte of Li-ion battery [J]. Journal of Power Sources, 2002, 109(2): 458-464.

[44] Kanamura K. Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries [J]. Journal of power sources, 1999, 81: 123-129.

[45] Markovsky B, Amalraj F, Gottlieb HE, Gofer Y, Martha SK and Aurbach D. On the electrochemical behavior of aluminum electrodes in nonaqueous electrolyte solutions of lithium salts [J]. Journal of The Electrochemical Society, 2010, 157(4): A423.

[46] Kanamura K, Umegaki T, Shiraishi S, Ohashi M and Takehara Z-i. Electrochemical behavior of al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N [J]. Journal of the Electrochemical Society, 2002, 149(2): A185.

[47] Krause LJ, Lamanna W, Summerfield J, et al. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells [J]. Journal of power sources, 1997, 68(2): 320-325.

[48] Yang H, Kwon K, Devine TM and Evans JW. Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance [J]. Journal of The Electrochemical Society, 2000, 147(12): 4399.

[49] Morita M, Shibata T, Yoshimoto N and Ishikawa M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries [J]. Electrochimica Acta, 2002, 47(17): 2787-2793.

[50] Barlowz C. Reaction of water with hexafluorophosphates and with Li bis(perfluoroethylsulfonyl)imide salt [J]. Electrochemical and solid-state letters, 1999, 2(8): 362.

[51] Schmidt M, Heider U, Kuehner A, et al. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries [J]. Journal of power sources, 2001, 97: 557-560.

[52] Kawamura T, Okada S and Yamaki J-i. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells [J]. Journal of power sources. 2006. 156(2): 547-554.

[53] Plakhotnyk AV, Ernst L and Schmutzler R. Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O [J]. Journal of Fluorine Chemistry, 2005, 126(1): 27-31.

[54] He X, Zhu Y and Mo Y. Origin of fast ion diffusion in super-ionic conductors [J]. Nature communications, 2017, 8(1): 1-7.

[55] Yang H, Zhuang GV and Ross Jr PN. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6 [J]. Journal of Power Sources, 2006, 161(1): 573-579.

[56] Ravdel B, Abraham K, Gitzendanner R, DiCarlo J, Lucht B and Campion C. Thermal stability of lithium-ion battery electrolytes [J]. Journal of Power Sources, 2003, 119: 805-810.

[57] Choi N-S, Profatilova IA, Kim S-S and Song E-H. Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte [J]. Thermochimica acta, 2008, 480(1-2): 10-14.

[58] Li W and Lucht BL. Lithium-ion batteries: thermal reactions of electrolyte with the surface of metal oxide cathode particles [J]. Journal of The Electrochemical Society, 2006, 153(8): A1617.

[59] Yang H and Shen X-D. Dynamic TGA/FT-IR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell [J]. Journal of power sources, 2007, 167(2): 515-519.

[60] Xu K. Electrolytes and interphases in Li-ion batteries and beyond [J]. Chemical reviews, 2014, 114(23): 11503-11618.

[61] Schmitz RW, Murmann P, Schmitz R, et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods [J]. Progress in Solid State Chemistry, 2014, 42(4): 65-84.

[62] Bhatt MD and O’Dwyer C. Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives [J]. Chemical Physics Letters, 2015, 618: 208-213.

[63] Zhao H, Park S-J, Shi F, et al. Propylene carbonate (PC)-based electrolytes with high coulombic efficiency for lithium-ion batteries [J]. Journal of The Electrochemical Society, 2013, 161(1): A194.

[64] Bhatt MD, Cho M and Cho K. Conduction of Li+ cations in ethylene carbonate (EC) and propylene carbonate (PC): comparative studies using density functional theory [J]. Journal of Solid State Electrochemistry, 2012, 16(2): 435-441.

[65] Wang C, Nakamura H, Noguchi H, Yoshio M and Yoshitake H. Suppression of electrochemical decomposition of propylene carbonate (PC) on a graphite anode in PC base electrolyte with catechol carbonate; Catechol carbonate tenka denkaieki deno graphite fukyokujo ni okeru propylene carbonate no bunseki yokusei [J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku (Electrochemistry and Industrial Physical Chemistry), 1998, 66: 286

[66] Bhatt MD, Cho M and Cho K. Interaction of Li+ ions with ethylene carbonate (EC): density functional theory calculations [J]. Applied Surface Science, 2010, 257(5): 1463-1468.

[67] Li Q, Chen J, Fan L, Kong X and Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond [J]. Green Energy & Environment, 2016, 1(1): 18-42.

[68] Hu M, Pang X and Zhou Z. Recent progress in high-voltage lithium ion batteries [J]. Journal of Power Sources, 2013, 237: 229-242.

[69] Markevich E, Baranchugov V and Aurbach D. On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5 V Li ion batteries [J]. Electrochemistry communications, 2006, 8(8): 1331-1334.

[70] Cao X, He X, Wang J, et al. High voltage LiNi0. 5Mn1. 5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: carbonate-versus ionic liquid-based electrolytes [J]. ACS applied materials & interfaces, 2016, 8(39): 25971-25978.

[71] Yim T, Kwon MS, Mun J and Lee KT. Room temperature ionic liquid‐based electrolytes as an alternative to carbonate‐based electrolytes [J]. Israel Journal of Chemistry, 2015, 55(5): 586-598.

[72] Elia GA, Ulissi U, Jeong S, Passerini S and Hassoun J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes [J]. Energy & Environmental Science, 2016, 9(10): 3210-3220.

[73] Wu F, Zhu Q, Chen R, Chen N, Chen Y and Li L. A safe electrolyte with counterbalance between the ionic liquid and tris (ethylene glycol) dimethyl ether for high performance lithium-sulfur batteries [J]. Electrochemica Acta, 2015, 184: 356-363.

[74] Nakagawa H. Electrolytes containing ionic liquids for improved safety of lithium-ion batteries [J]. Electrochemistry, 2015, 83(9): 707-710.

[75] Liang Y, Tao Z and Chen J. Organic electrode materials for rechargeable lithium batteries [J]. Advanced Energy Materials, 2012, 2(7): 742-769.

[76] Nishi Y. Lithium ion secondary batteries; past 10 years and the future [J]. Journal of Power Sources, 2001, 100(1-2): 101-106.

[77] Ellis BL, Knauth P and Djenizian T. Three‐dimensional self‐supported metal oxides for advanced energy storage [J]. Advanced Materials, 2014, 26(21): 3368-3397.

[78] Zuo W, Xiao Z, Zarrabeitia M, Xue X, Yang Y and Passerini S. Guidelines for air-stable lithium/sodium layered oxide cathodes [J]. ACS Materials Letters, 2022, 4: 1074-1086.

[79] Jung J-W, Ryu W-H, Shin J, Park K and Kim I-D. Glassy metal alloy nanofiber anodes employing graphene wrapping layer: toward ultralong-cycle-life lithium-ion batteries [J]. ACS nano, 2015, 9(7): 6717-6727.

[80] Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes [J]. Nature nanotechnology, 2014, 9(3): 187-192.

[81] Su X, Wu Q, Li J, et al. Silicon‐based nanomaterials for lithium‐ion batteries: a review [J]. Advanced Energy Materials, 2014, 4(1): 1300882.

[82] Manthiram A, Yu X and Wang S. Lithium battery chemistries enabled by solid-state electrolytes [J]. Nature Reviews Materials, 2017, 2(4): 1-16.

[83] Sun C, Liu J, Gong Y, Wilkinson DP and Zhang J. Recent advances in all-solid-state rechargeable lithium batteries [J]. Nano Energy, 2017, 33: 363-386.

[84] Long L, Wang S, Xiao M and Meng Y. Polymer electrolytes for lithium polymer batteries [J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069.

[85] Fan L, Wei S, Li S, Li Q and Lu Y. Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries [J]. Advanced Energy Materials. 2018. 8(11): 1702657.

[86] Keller M, Varzi A and Passerini S. Hybrid electrolytes for lithium metal batteries [J]. Journal of Power Sources, 2018, 392: 206-225.

[87] Winter M, Imhof R, Joho F and Novák P. FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells [J]. Journal of power sources, 1999, 81: 818-823.

[88] Lux S, Lucas I, Pollak E, Passerini S, Winter M and Kostecki R. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes [J]. Electrochemistry Communications, 2012, 14(1): 47-50.

[89] Winter M. The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries [J]. Zeitschrift für physikalische Chemie, 2009, 223(10-11): 1395-1406.

[90] Tarascon J and Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+ xMn2O4/carbon Li-ion cells [J]. Solid State Ionics, 1994, 69(3-4): 293-305.

[91] Katayama N, Kawamura T, Baba Y and Yamaki J-i. Thermal stability of propylene carbonate and ethylene carbonate-propylene carbonate-based electrolytes for use in Li cells [J]. Journal of power sources, 2002, 109(2): 321-326.

[92] Kawamura T, Kimura A, Egashira M, Okada S and Yamaki J-I. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells [J]. Journal of Power Sources, 2002, 104(2): 260-264.

[93] Hammami A, Raymond N and Armand M. Runaway risk of forming toxic compounds [J]. Nature, 2003, 424(6949): 635-636.

[94] Handel P, Fauler G, Kapper K, et al. Thermal aging of electrolytes used in lithium-ion batteries-An investigation of the impact of protic impurities and different housing materials [J]. Journal of Power Sources, 2014, 267: 255-259.

[95] MacNeil D and Dahn J. Can an electrolyte for lithium-ion batteries be too stable? [J]. Journal of the Electrochemical Society, 2002, 150(1): A21.

[96] Yaakov D, Gofer Y, Aurbach D and Halalay IC. On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range [J]. Journal of the Electrochemical Society, 2010, 157(12): A1383.

[97] Campion CL, Li W and Lucht BL. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J]. Journal of The Electrochemical Society, 2005, 152(12): A2327.

[98] Wang Q, Sun J, Yao X and Chen C. Thermal stability of LiPF6/EC+ DEC electrolyte with charged electrodes for lithium ion batteries [J]. Thermochimica Acta, 2005, 437(1-2): 12-16.

[99] Xiang H, Wang H, Chen C, et al. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries [J]. Journal of Power Sources, 2009, 191(2): 575-581.

[100] Scrosati B. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells [J]. The Chemical Record, 2005, 5(5): 286-297.

[101] Foropoulos Jr J and DesMarteau DD. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl)imide,(CF3SO2)2NH [J]. Inorganic Chemistry, 1984, 23(23): 3720-3723.

[102] Dahn J, Von Sacken U, Juzkow M and Al‐Janaby H. Rechargeable LiNiO2/carbon cells [J]. Journal of the Electrochemical Society, 1991, 138(8): 2207-2211.

[103] Dominey LA, Koch VR and Blakley TJ. Thermally stable lithium salts for polymer electrolytes [J]. electrochemica Acta, 1992, 37(9): 1551-1554.

[104] ElectrodicsIn: Bockris JOM, Reddy AKN and Gamboa-Aldeco M, (eds.). Modern Electrochemistry 2A: Fundamentals of Electrodics [B], 2000, Boston, MA: Springer US, 1035-400.

[105] Angell CA, Ansari Y and Zhao Z. Ionic liquids: past, present and future [J]. Faraday discussions, 2012, 154: 9-27.

[106] Lewandowski A and Świderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies [J]. Journal of Power sources, 2009, 194(2): 601-609.

[107] Kar M, Simons TJ, Forsyth M and MacFarlane DR. Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective [J]. Physical chemistry chemical physics, 2014,. 16(35): 18658-18674.

[108] Rana UA, Forsyth M, MacFarlane DR and Pringle JM. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells [J]. Electrochimica Acta, 2012, 84: 213-222.

[109] Eftekhari A, Liu Y and Chen P. Different roles of ionic liquids in lithium batteries [J]. Journal of Power Sources, 2016, 334: 221-239.

[110] Armand M, Endres F, MacFarlane DR, Ohno H and Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future [J]. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 2011, 129-137.

[111] Bhatt AI, Best AS, Huang J and Hollenkamp AF. Application of the N-propyl-N-methyl-pyrrolidinium bis(fluorosulfonyl)imide RTIL containing lithium bis(fluorosulfonyl)imide in ionic liquid based lithium batteries [J]. Journal of the Electrochemical Society, 2009, 157(1): A66.

[112] Best A, Bhatt A and Hollenkamp A. Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology [J]. Journal of The Electrochemical Society, 2010, 157(8): A903.

[113] Shkrob IA, Marin TW, Zhu Y and Abraham DP. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry [J]. The Journal of Physical Chemistry C, 2014, 118(34): 19661-19671.

[114] Basile A, Bhatt AI and O’Mullane AP. A combined scanning electron micrograph and electrochemical study of the effect of chemical interaction on the cyclability of lithium electrodes in an ionic liquid electrolyte [J]. Australian Journal of Chemistry, 2012, 65(11): 1534-1541.

[115] Haskins JB, Bennett WR, Wu JJ, et al. Computational and experimental investigation of Li-doped ionic liquid electrolytes:[pyr14][TFSI],[pyr13][FSI], and [EMIM][BF4] [J]. The Journal of Physical Chemistry B, 2014, 118(38): 11295-11309.

[116] Han H-B, Zhou S-S, Zhang D-J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties [J]. Journal of Power Sources, 2011, 196(7): 3623-3632.

[117] Kühnel R-S, Lübke M, Winter M, Passerini S and Balducci A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes [J]. Journal of Power Sources, 2012, 214: 178-184.

[118] Cho E, Mun J, Chae OB, et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide based ionic liquid for lithium-ion batteries [J]. Electrochemistry Communications, 2012, 22: 1-3.

[119] Budi A, Basile A, Opletal G, et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide [J]. The Journal of Physical Chemistry C, 2012, 116(37): 19789-19797.

[120] Grande L, von Zamory J, Koch SL, Kalhoff J, Paillard E and Passerini S. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes [J]. ACS applied materials & interfaces, 2015, 7(10): 5950-5958.

[121] Herzig T, Schreiner C, Bruglachner H, Jordan S, Schmidt M and Gores HJ. Temperature and concentration dependence of conductivities of some new semichelatoborates in acetonitrile and comparison with other borates [J]. Journal of Chemical & Engineering Data, 2008, 53(2): 434-438.

[122] Ma C, Chen K, Liang C, et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes [J]. Energy & Environmental Science, 2014, 7(5): 1638-1642.

[123] Zhang SS. An unique lithium salt for the improved electrolyte of Li-ion battery [J]. Electrochemistry communications, 2006, 8(9): 1423-1428.

[124] Zugmann S, Moosbauer D, Amereller M, et al. Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate [J]. Journal of Power Sources, 2011, 196(3): 1417-1424.

[125] Egashira M, Okada S, Yamaki J-i, Dri DA, Bonadies F and Scrosati B. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte [J]. Journal of power sources, 2004, 138(1-2): 240-244.

[126] MacFarlane DR, Huang J and Forsyth M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries [J]. Nature, 1999, 402(6763): 792-794.

[127] Howlett PC, MacFarlane DR and Hollenkamp AF. High lithium metal cycling efficiency in a room-temperature ionic liquid [J]. Electrochemical and solid-state letters, 2004, 7(5): A97.

[128] Hassoun J, Fernicola A, Navarra M, Panero S and Scrosati B. An advanced lithium-ion battery based on a nanostructured Sn-C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte [J]. Journal of Power Sources, 2010, 195(2): 574-579.

[129] Ferrari S, Quartarone E, Mustarelli P, et al. A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and lithium bis(trifluoromethanesulfonyl)imide: a new promising electrolyte for lithium batteries [J]. Journal of Power Sources, 2009, 194(1): 45-50.

[130] Zheng F, Kotobuki M, Song S, Lai MO and Lu L. Review on solid electrolytes for all-solid-state lithium-ion batteries [J]. Journal of Power Sources, 2018, 389: 198-213.

[131] Varzi A, Raccichini R, Passerini S and Scrosati B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries [J]. Journal of Materials Chemistry A, 2016, 4(44): 17251-17259.

[132] Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction [J]. Chemical reviews, 2016, 116(1): 140-162.

[133] Rettenwander D, Welzl A, Pristat S, et al. A microcontact impedance study on NASICON type Li1+ xAlxTi2- x (PO4)3 (0≤ x≤ 0.5) single crystals [J]. Journal of Materials Chemistry A, 2016, 4(4): 1506-1513.

[134] Blomgren GE. Liquid electrolytes for lithium and lithium-ion batteries [J]. Journal of Power Sources, 2003, 119: 326-329.

[135] Stoeva Z, Martin-Litas I, Staunton E, Andreev YG and Bruce PG. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X= P, As, Sb [J]. Journal of the American Chemical Society, 2003, 125(15): 4619-4626.

[136] Henderson WA, Brooks NR and Young VG. Single-crystal structures of polymer electrolytes [J]. Journal of the American Chemical Society, 2003, 125(40): 12098-12109.

[137] Appetecchi G, Zane D and Scrosati B. PEO-based electrolyte membranes based on LiBC4O8 Salt [J]. Journal of the Electrochemical Society, 2004, 151(9): A1369.

[138] Niedzicki L, Kasprzyk M, Kuziak K, et al. Modern generation of polymer electrolytes based on lithium conductive imidazole salts [J]. Journal of Power Sources, 2009, 192(2): 612-617.

[139] Mancini M, Nobili F, Dsoke S, et al. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper [J]. Journal of Power Sources, 2009, 190(1): 141-148.

[140] Nobili F, Dsoke S, Mancini M and Marassi R. Interfacial properties of copper-coated graphite electrodes: coating thickness dependence [J]. Fuel Cells, 2009, 9(3): 264-268.

[141] Ui K, Kikuchi S, Mikami F, Kadoma Y and Kumagai N. Improvement of electrochemical characteristics of natural graphite negative electrode coated with polyacrylic acid in pure propylene carbonate electrolyte [J]. Journal of power sources, 2007, 173(1): 518-521.

[142] Shin J-H, Henderson WA and Passerini S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes [J]. Electrochemistry Communications, 2003, 5(12): 1016-1020.

[143] Shin J-H, Henderson WA and Passerini S. An elegant fix for polymer electrolytes [J]. Electrochemical and solid-state letters, 2005, 8(2): A125.

[144] Shin J-H, Henderson WA and Passerini S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries [J]. Journal of the Electrochemical Society, 2005, 152(5): A978.

[145] Fisher AS, Khalid MB, Widstrom M and Kofinas P. Anion effects on solid polymer electrolytes containing sulfur based ionic liquid for lithium batteries [J]. Journal of the Electrochemical Society, 2012, 159(5): A592.

[146] Fisher AS, Khalid MB and Kofinas P. Block copolymer electrolyte with sulfur based ionic liquid for lithium batteries [J]. Journal of The Electrochemical Society, 2012, 159(12): A2124.

[147] Niitani T, Shimada M, Kawamura K, Dokko K, Rho Y-H and Kanamura K. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure [J]. Electrochemical and Solid-State Letters, 2005, 8(8): A385.

[148] Niitani T, Amaike M, Nakano H, Dokko K and Kanamura K. Star-shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries [J]. Journal of the Electrochemical Society, 2009, 156(7): A577.

[149] Trapa PE, Won Y-Y, Mui SC, et al. Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries [J]. Journal of the Electrochemical Society, 2004, 152(1): A1.

[150] Nunes S, de Zea Bermudez V, Ostrovskii D, et al. Diurea cross-linked poly (oxyethylene)/siloxane ormolytes for lithium batteries [J]. Journal of The Electrochemical Society, 2005, 152(2): A429.

[151] Wang Q, Zhang H, Cui Z, et al. Siloxane-based polymer electrolytes for solid-state lithium batteries [J]. Energy Storage Materials, 2019, 23: 466-490.

[152] Zhang J, Yue L, Hu P, et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries [J]. Scientific reports, 2014, 4(1): 1-7.

[153] Pan Q, Smith DM, Qi H, Wang S and Li CY. Hybrid electrolytes with controlled network structures for lithium metal batteries [J]. Advanced Materials. 2015. 27(39): 5995-6001.

[154] Ratner MA and Shriver DF. Ion transport in solvent-free polymers [J]. Chemical reviews, 1988, 88(1): 109-124.

[155] Snyder J, Ratner M and Shriver D. Ion conductivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains [J]. Journal of The Electrochemical Society, 2003, 150(8): A1090.

[156] Ghosh A, Wang C and Kofinas P. Block copolymer solid battery electrolyte with high Li-ion transference number [J]. Journal of the Electrochemical Society, 2010, 157(7): A846.

[157] Trapa PE, Acar MH, Sadoway DR and Mayes AM. Synthesis and characterization of single-ion graft copolymer electrolytes [J]. Journal of The Electrochemical Society, 2005, 152(12): A2281.

[158] Ghosh A and Kofinas P. Nanostructured block copolymer dry electrolyte [J]. Journal of the Electrochemical Society, 2008, 155(6): A428.

[159] Aoki T, Konno A and Fujinami T. Li-ion conductivity of aluminate and borate complex polymers containing fluoroalkane dicarboxylate [J]. Journal of the Electrochemical Society, 2004, 151(6): A887.

[160] Klongkan S and Pumchusak J. Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte [J]. Electrochimica Acta, 2015, 161: 171-6.

[161] Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E and Hendrickson M. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes [J]. Electrochimica Acta, 2001, 46(16): 2457-61.

[162] Dissanayake M, Jayathilaka P, Bokalawala R, Albinsson I and Mellander B-E. Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte [J]. Journal of Power Sources, 2003, 119: 409-414.

[163] Masoud EM, El-Bellihi A-A, Bayoumy W and Mousa M. Organic–inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties [J]. Journal of Alloys and Compounds, 2013, 575: 223-228.

[164] Wang W, Yi E, Fici AJ, Laine RM and Kieffer J. Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles [J]. The Journal of Physical Chemistry C, 2017, 121(5): 2563-2573.

[165] Lin C, Hung C, Venkateswarlu M and Hwang B. Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries [J]. Journal of power sources, 2005, 146(1-2): 397-401.

[166] Lin D, Liu W, Liu Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide) [J]. Nano letters, 2016, 16(1): 459-465.

[167] Jurkin T and Pucić I. Irradiation effects in poly(ethylene oxide)/silica nanocomposite films and gels [J]. Polymer Engineering & Science, 2013, 53(11): 2318-2327.

[168] Choudhury S. A highly reversible room-temperature lithium metal battery based on cross-linked hairy nanoparticles. Rational design of nanostructured polymer electrolytes and solid–liquid Interphases for lithium batteries [B], 2019, Springer, 35-57.

[169] Itoh T, Ichikawa Y, Uno T, Kubo M and Yamamoto O. Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2 [J]. Solid State Ionics, 2003, 156(3-4): 393-399.

[170] Kesavan K, Rajendran S and Mathew CM. Influence of barium titanate on poly(vinyl pyrrolidone)‐based composite polymer blend electrolytes for lithium battery applications [J]. Polymer Composites, 2015, 36(2): 302-311.

[171] Sun H, Takeda Y, Imanishi N, Yamamoto O and Sohn HJ. Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide‐based electrolytes [J]. Journal of The Electrochemical Society, 2000, 147(7): 2462.

[172] Wen Z, Itoh T, Uno T, Kubo M and Yamamoto O. Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly (ethylene oxide-co-propylene oxide) and ceramic filler [J]. Solid State Ionics, 2003, 160(1-2): 141-148.

[173] Bohnke O. The fast lithium-ion conducting oxides Li3xLa2/3- xTiO3 from fundamentals to application [J]. Solid State Ionics, 2008, 179(1-6): 9-15.

[174] Kwon WJ, Kim H, Jung K-N, et al. Enhanced Li+ conduction in perovskite Li3xLa2/3-x□ 1/3-2xTiO3 solid-electrolytes via microstructural engineering [J]. Journal of Materials Chemistry A, 2017, 5(13): 6257-6262.

[175] Arbi K, Rojo J and Sanz J. Lithium mobility in titanium based NASICON Li1+ xTi2- xAlx (PO4)3 and LiTi2- x Zrx (PO4)3 materials followed by NMR and impedance spectroscopy [J]. Journal of the European Ceramic Society, 2007, 27(13-15): 4215-4218.

[176] Jian Z, Hu YS, Ji X and Chen W. Nasicon‐structured materials for energy storage [J]. Advanced Materials, 2017, 29(20): 1601925.

[177] Arbi K, Bucheli W, Jiménez R and Sanz J. High lithium ion conducting solid electrolytes based on NASICON Li1+ xAlxM2- x(PO4)3 materials (M= Ti, Ge and 0≤ x≤ 0.5) [J]. Journal of the European Ceramic Society, 2015, 35(5): 1477-1484.

[178] Zhou W, Wang S, Li Y, Xin S, Manthiram A and Goodenough JB. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte [J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388.

[179] Luntz AC, Voss J and Reuter K. Interfacial challenges in solid-state Li ion batteries. ACS Publications, 2015, 4599-4604.

[180] Kerman K, Luntz A, Viswanathan V, Chiang Y-M and Chen Z. Practical challenges hindering the development of solid state Li ion batteries [J]. Journal of The Electrochemical Society, 2017, 164(7): A1731.

[181] Li Y, Xu B, Xu H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium‐ion batteries [J]. Angewandte Chemie International Edition, 2017, 56(3): 753-756.

[182] Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries [J]. Nature materials, 2017, 16(5): 572-579.

[183] Pearse AJ, Schmitt TE, Fuller EJ, et al. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte [J]. Chemistry of Materials, 2017, 29(8): 3740-3753.

[184] Glenneberg J, Andre F, Bardenhagen I, Langer F, Schwenzel J and Kun R. A concept for direct deposition of thin film batteries on flexible polymer substrate [J]. Journal of Power Sources, 2016, 324: 722-728.

[185] Li J, Ma C, Chi M, Liang C and Dudney NJ. Solid electrolyte: the key for high‐voltage lithium batteries [J]. Advanced Energy Materials, 2015, 5(4): 1401408.

[186] Rangasamy E, Sahu G, Keum JK, Rondinone AJ, Dudney NJ and Liang C. A high conductivity oxide-sulfide composite lithium superionic conductor [J]. Journal of Materials Chemistry A, 2014, 2(12): 4111-4116.

[187] Hood ZD, Wang H, Li Y, Pandian AS, Paranthaman MP and Liang C. The “filler effect”: a study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes [J]. Solid State Ionics, 2015, 283: 75-80.

[188] Keller M, Appetecchi GB, Kim G-T, et al. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI [J]. Journal of Power Sources, 2017, 353: 287-297.

[189] Wan Z, Lei D, Yang W, et al. Low resistance-integrated all‐solid‐state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder [J]. Advanced Functional Materials, 2019, 29(1): 1805301.

[190] Liu L, Chu L, Jiang B and LiM. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries [J]. Solid State Ionics, 2019, 331: 89-95.

[191] Zhang W, Nie J, Li F, Wang ZL and Sun C. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane [J]. Nano Energy, 2018, 45: 413-419.

[192] Aguesse F, Manalastas W, Buannic L, et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal [J]. ACS applied materials & interfaces, 2017, 9(4): 3808-3816.

[193] Oh DY, Nam YJ, Park KH, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk‐type all‐solid‐state lithium‐ion batteries [J]. Advanced Energy Materials, 2015, 5(22): 1500865.

[194] Minami K, Hayashi A and Tatsumisago M. Characterization of solid electrolytes prepared from Li2S-P2S5 glass and ionic liquids [J]. Journal of The Electrochemical Society, 2010, 157(12): A1296.

[195] Xu B, Duan H, Liu H, Wang CA and Zhong S. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21077-21082.

[196] Zhou D, Liu R, Zhang J, et al. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries [J]. Nano Energy, 2017, 33: 45-54.

[197] Rao M, Geng X, Liao Y, Hu S and Li W. Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery [J]. Journal of Membrane Science, 2012, 399: 37-42.

[198] Liang Y, Xia Y, Zhang S, et al. A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) poly(propylene carbonate) for solid-state lithium ion batteries [J]. Electrochimica Acta, 2019, 296: 1064-1069.

[199] Huang S, Cui Z, Qiao L, et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries [J]. Electrochimica Acta, 2019, 299: 820-827.

[200] Gong Y, Fu K, Xu S, et al. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries [J]. Materials today, 2018, 21(6): 594-601.

[201] Huo H, Chen Y, Luo J, Yang X, Guo X and Sun X. Rational design of hierarchical “ceramic‐in‐polymer” and “polymer‐in‐ceramic” electrolytes for dendrite‐free solid‐state batteries [J]. Advanced Energy Materials, 2019, 9(17): 1804004.

[202] Gao X, Dong Y, Li S, Zhou J, Wang L and Wang B. MOFs and COFs for batteries and supercapacitors [J]. Electrochemical Energy Reviews, 2020, 3(1): 81-126.

[203] Horcajada P, Serre C, Vallet‐Regí M, Sebban M, Taulelle F and Férey G. Metal-organic frameworks as efficient materials for drug delivery [J]. Angewandte chemie, 2006, 118(36): 6120-6124.

[204] Murray LJ, Dincă M and Long JR. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5): 1294-1314.

[205] An J, Geib SJ and Rosi NL. High and selective CO2 uptake in a cobalt adeninate metal- organic framework exhibiting pyrimidine-and amino-decorated pores [J]. Journal of the American Chemical Society, 2010, 132(1): 38-49.

[206] Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ and Lin W. Energy transfer dynamics in metal-organic frameworks [J]. Journal of the American Chemical Society, 2010, 132(37): 12767-12769.

[207] Farha OK, Shultz AM, Sarjeant AA, Nguyen ST and Hupp JT. Active-site-accessible, porphyrinic metal-organic framework materials [J]. Journal of the American Chemical Society, 2011, 133(15): 5652-5655.

[208] Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP and Hupp JT. Metal-organic framework materials as chemical sensors [J]. Chemical reviews, 2012, 112(2): 1105-1125.

[209] Banerjee A, Singh U, Aravindan V, Srinivasan M and Ogale S. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries [J]. Nano Energy, 2013, 2(6): 1158-1163.

[210] Wu R, Qian X, Rui X, et al. Zeoliticimidazolate framework 67‐ derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability [J]. Small, 2014, 10(10): 1932-1938.

[211] Zou F, Hu X, Li Z, et al. MOF‐derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high‐rate lithium‐ion batteries [J]. Advanced materials, 2014, 26(38): 6622-6628.

[212] Zhang G, Hou S, Zhang H, et al. High‐performance and ultra‐stable lithium‐ion batteries based on MOF‐derived ZnO@ZnO quantum Dots/C core-shell nanorod arrays on a carbon cloth anode [J]. Advanced Materials, 2015, 27(14): 2400-2405.

[213] Nagarathinam M, Saravanan K, Phua EJH, Reddy M, Chowdari B and Vittal JJ. Redox‐active metal‐centered oxalato phosphate open framework cathode materials for lithium ion batteries [J]. Angewandte Chemie International Edition, 2012, 51(24): 5866-5870.

[214] Tang J, Salunkhe RR, Liu J, et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon [J]. Journal of the American Chemical Society, 2015. 137(4): 1572-1580.

[215] Liu J, Wu C, Xiao D, et al. MOF‐derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li‐ion storage [J]. Small, 2016, 12(17): 2354-2364.

[216] Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks [J]. Science, 2010, 329(5990): 424-428.

[217] Chen N, Li Y, Dai Y, et al. A Li+ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries [J]. Journal of Materials Chemistry A, 2019, 7(16): 9530-9536.

[218] Zhao R, Liang Z, Zou R and Xu Q. Metal-organic frameworks for batteries [J]. Joule, 2018, 2(11): 2235-2259.

[219] Wang L, Han Y, Feng X, Zhou J, Qi P and Wang B. Metal-organic frameworks for energy storage: batteries and supercapacitors [J]. Coordination Chemistry Reviews, 2016, 307: 361-381.

[220] Shen L, Wu HB, Liu F, et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks [J]. Advanced Materials, 2018, 30(23): 1707476.

[221] Bai S, Sun Y, Yi J, He Y, Qiao Y and Zhou H. High-power Li-metal anode enabled by metal-organic framework modified electrolyte [J]. Joule, 2018, 2(10): 2117-2132.

[222] Wiers BM, Foo M-L, Balsara NP and Long JR. A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites [J]. Journal of the American Chemical Society, 2011, 133(37): 14522-14525.

[223] Gerbaldi C, Nair JR, Kulandainathan MA, et al. Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries [J]. Journal of Materials Chemistry A, 2014, 2(26): 9948-9954.

[224] Kumar RS, Raja M, Kulandainathan MA and Stephan AM. Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries [J]. RSC advances, 2014, 4(50): 26171-26175.

[225] Wang Z, Tan R, Wang H, et al. A metal-organic framework based electrolyte with nanowetted interfaces for high energy density solid-state lithium battery [J]. Advanced Materials, 2018, 30(2): 1704436.

[226] Xu G, Nie P, Dou H, Ding B, Li L and Zhang X. Exploring metal organic frameworks for energy storage in batteries and supercapacitors [J]. Materials today, 2017, 20(4): 191-209.

[227] Wang Z, Wang S, Wang A, et al. Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries [J]. Journal of Materials Chemistry A, 2018, 6(35): 17227-17234.

[228] Huo H, Wu B, Zhang T, et al. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries [J]. Energy Storage Materials, 2019, 18: 59-67.

[229] Qian J, Li Y, Zhang M, et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield [J]. Nano Energy, 2019, 60: 866-874.

[230] Sherwood D and Cooper J. Crystals, X-rays and proteins: comprehensive protein crystallography [B], 2010, OUP Oxford.

[231] Xia Y, Xu N, Du L, et al. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte [J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22930-22938.

[232] Dresselhaus MS and Thomas I. Alternative energy technologies [J]. Nature, 2001, 414(6861): 332-337.

[233] Armand M and Tarascon J-M. Building better batteries [J]. nature, 2008, 451(7179): 652-657.

[234] Goodenough JB and Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of materials, 2010, 22(3): 587-603.

[235] Safa M, Chamaani A, Chawla N and El-Zahab B. Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications [J]. Electrochimica Acta, 2016, 213: 587-593.

[236] Xin S, You Y, Wang S, Gao H-C, Yin Y-X and Guo Y-G. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects [J]. ACS Energy Letters, 2017, 2(6): 1385-1394.

[237] Rustomji CS, Yang Y, Kim TK, et al. Liquefied gas electrolytes for electrochemical energy storage devices [J]. Science, 2017, 356(6345): eaal4263.

[238] Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries [J]. Nature materials, 2013, 12(5): 452-457.

[239] Tang S, Lan Q, Xu L, et al. A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery [J]. Nano Energy, 2020, 71: 104600.

[240] Gao Z, Sun H, Fu L, et al. Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries [J]. Advanced materials, 2018, 30(17): 1705702.

[241] Koerver R, Aygün I, Leichtweiß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes [J]. Chemistry of Materials, 2017, 29(13): 5574-5582.

[242] Zhang Q, Liu K, Ding F and Liu X. Recent advances in solid polymer electrolytes for lithium batteries [J]. Nano Research, 2017, 10(12): 4139-4174.

[243] Bruce PG, Evans J and Vincent CA. Conductivity and transference number measurements on polymer electrolytes [J]. Solid State Ionics, 1988, 28: 918-922.

[244] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor [J]. Nature materials, 2011, 10(9): 682-686.

[245] Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode [J]. Chemistry of Materials, 2016, 28(7): 2400-2407.

[246] Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors [J]. Nature Energy, 2016, 1(4): 1-7.

[247] Wang S, Bai Q, Nolan AM, et al. Lithium chlorides and bromides as promising solid‐state chemistries for fast ion conductors with good electrochemical stability [J]. Angewandte Chemie International Edition, 2019, 58(24): 8039-8043.

[248] Zhang Y, Zuo T-T, Popovic J, et al. Towards better Li metal anodes: challenges and strategies [J]. Materials Today, 2020, 33: 56-74.

[249] Liew CW, Durairaj R and Ramesh S. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt [J]. PloS one, 2014, 9(7): e102815.

[250] Song J, Wang Y and Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries [J]. Journal of power sources, 1999, 77(2): 183-197.

[251] Meyer WH. Polymer electrolytes for lithium‐ion batteries [J]. Advanced materials, 1998, 10(6): 439-448.

[252] Yu S, Schmohl S, Liu Z, et al. Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries [J]. Journal of Materials Chemistry A, 2019, 7(8): 3882-3894.

[253] Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13861.

[254] Øien-Ødegaard S, Bouchevreau B, Hylland K, et al. UiO-67-type metal-organic frameworks with enhanced water stability and methane adsorption capacity [J]. Inorganic Chemistry, 2016, 55(5): 1986-1991.

[255] Gong Y, Yuan Y, Chen C, et al. Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation [J]. Journal of Catalysis, 2019, 371: 106-115.

[256] Wang Z, Wang Z, Yang L, et al. Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries [J]. Nano Energy, 2018, 49: 580-587.

[257] Fujie K, Ikeda R, Otsubo K, Yamada T and Kitagawa H. Lithium ion diffusion in a metal-organic framework mediated by an ionic liquid [J]. Chemistry of Materials, 2015, 27(21): 7355-7361.

[258] Ma Q, Qi X, Tong B, et al. Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance [J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29705-29712.

[259] Xu W, Pei X, Diercks CS, Lyu H, Ji Z and Yaghi OM. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte [J]. Journal of the American Chemical Society, 2019, 141(44): 17522-17526.

[260] Park SS, Tulchinsky Y and Dincă M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework [J]. Journal of the American Chemical Society, 2017, 139(38): 13260.

[261] Wu JF and Guo X. Nanostructured metal-organic framework (MOF)‐derived solid electrolytes realizing fast lithium ion transportation kinetics in solid‐state batteries [J]. Small, 2019, 15(5): 1804413.

[262] Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y and Simon P. Relation between the ion size and pore size for an electric double-layer capacitor [J]. Journal of the American Chemical Society, 2008, 130(9): 2730.

[263] Wang G, He P and Fan LZ. Asymmetric polymer electrolyte constructed by metal-organic framework for solid‐state, dendrite‐free lithium metal battery [J]. Advanced Functional Materials, 2021, 31(3): 2007198.

[264] Panda DK, Maity K, Palukoshka A, Ibrahim F and Saha S. Li+ ion-conducting sulfonate-based neutral metal-organic framework [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4619-4624.

[265] Chheda JN, Huber GW and Dumesic JA. Liquid‐phase catalytic processing of biomass‐derived oxygenated hydrocarbons to fuels and chemicals [J]. Angewandte Chemie International Edition, 2007, 46(38): 7164-7183.

[266] Yu D, Wu B, Ge L, Wu L, Wang H and Xu T. Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance [J]. Journal of Materials Chemistry A, 2016, 4(28): 10878-10884.

[267] Li S, Zhang SQ, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries [J]. Advanced Science, 2020, 7(5): 1903088.

[268] Guan BY, Yu L, Wang X, Song S and Lou XW. Formation of onion‐like NiCo2S4 particles via sequential ion‐exchange for hybrid supercapacitors [J]. Advanced materials, 2017, 29(6): 1605051.

[269] Sun J, Yao X, Li Y, et al. Facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high‐energy, safe and adaptable lithium batteries [J]. Advanced Energy Materials, 2020, 10(31): 2000709.

[270] Zhang D, Xu X, Qin Y, et al. Recent progress in organic-inorganic composite solid electrolytes for all‐solid‐state lithium batteries [J]. Chemistry-A European Journal, 2020, 26(8): 1720-1736.

[271] Zhang J, Li L, Zheng C, et al. Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41538-41545.

[272] Zhang X, Wang S, Xue C, et al. Self‐suppression of lithium dendrite in all‐solid‐state lithium metal batteries with poly(vinylidene difluoride)‐based solid electrolytes [J]. Advanced materials, 2019, 31(11): 1806082.

[273] Dirican M, Yan C, Zhu P and Zhang X. Composite solid electrolytes for all-solid-state lithium batteries [J]. Materials Science and Engineering: R: Reports, 2019, 136: 27-46.

[274] Zhou X, Jiang H, Zheng H, Sun Y, Liang X and Xiang H. Nonflammable hybrid solid electrolyte membrane for a solid-state lithium battery compatible with conventional porous electrodes [J]. Journal of Membrane Science, 2020, 603: 117820.

[275] Homann G, Stolz L, Winter M and Kasnatscheew J. Elimination of “voltage noise” of poly (ethylene oxide)-based solid electrolytes in high-voltage lithium batteries: linear versus network polymers [J]. Iscience, 2020, 23(6): 101225.

[276] Zhou D, He YB, Liu R, et al. In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries [J]. Advanced Energy Materials, 2015, 5(15): 1500353.

[277] Xu L, Tang S, Cheng Y, et al. Interfaces in solid-state lithium batteries [J]. Joule, 2018, 2(10): 1991-2015.

[278] Lv F, Wang Z, Shi L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries [J]. Journal of Power Sources, 2019, 441: 227175.

[279] Xue Z, He D and Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253.

[280] Neculae AP, Otte A and Curticapean D. Numerical analysis of the diffusive mass transport in brain tissues with applications to optical sensors [C]. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIII, 2013, 8576: 857605.

[281] Jiang J, Guo J, Wan X, et al. 2D MoS2 neuromorphic devices for brain‐like computational systems [J]. Small, 2017, 13(29): 1700933.

[282] Nicholson C. Diffusion and related transport mechanisms in brain tissue [J]. Reports on progress in Physics, 2001, 64(7): 815.

[283] Rehman T, Haber E, Pohl KM, et al. Multimodal registration of white matter brain data via optimal mass transport [J]. MIDAS journal, 2008, 2008: 27.

[284] Gallos LK, Makse HA and Sigman M. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks [J]. Proceedings of the National Academy of Sciences, 2012, 109(8): 2825-2830.

[285] Ma M, Wang X, Duan Y, Frey SH and Gu X. Optimal mass transport based brain morphometry for patients with congenital hand deformities [J]. The Visual Computer, 2019, 35(9): 1311-1325.

[286] Chen Y, Wang Q and Wang T. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process [J]. Nanoscale, 2015, 7(39): p. 16442-50.

[287] Ray LA and Heys JJ. Fluid flow and mass transport in brain tissue [J]. Fluids, 2019, 4(4): 196.

[288] Agaliotis E, Rosenberger M, Ares A and Schvezov C. Influence of the shape of the particles in the solidification of composite materials [J]. Procedia Materials Science, 2012, 1: 58-63.

[289] Zhu Y, Li J, Wan M, Jiang L and Wei Y. A new route for the preparation of brain‐like nanostructured polyaniline [J]. Macromolecular rapid communications, 2007, 28(12): 1339-1344.

[290] Seo SD, Park D, Park S and Kim DW. “Brain-coral-like” mesoporous hollow CoS2@ N‐doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries [J]. Advanced Functional Materials, 2019, 29(38): 1903712.

[291] Zhou J-J, Wang R, Liu X-L, et al. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation [J]. Applied Surface Science, 2015, 346: 278-283.

[292] Li D, Wang J, Guo S, et al. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery [J]. Advanced Functional Materials, 2020, 30(50): 2003945.

[293] Porcarelli L, Gerbaldi C, Bella F and Nair JR. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries [J]. Scientific reports, 2016, 6(1): 1-14.

[294] Schulze MW, McIntosh LD, Hillmyer MA and Lodge TP. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation [J]. Nano letters, 2014, 14(1): 122-126.

[295] Chopade SA, Au JG, Li Z, Schmidt PW, Hillmyer MA and Lodge TP. Robust polymer electrolyte membranes with high ambient-temperature lithium-ion conductivity via polymerization-induced microphase separation [J]. ACS applied materials & interfaces, 2017, 9(17): 14561-14565.

[296] Wu J-F and Guo X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries [J]. Journal of Materials Chemistry A, 2019, 7(6): 2653-2659.

[297] Miner EM, Park SS and Dincă M. High Li+ and Mg2+ conductivity in a Cu-Azolate metal-organic framework [J]. Journal of the American Chemical Society, 2019, 141(10): 4422-4427.

[298] Han L, Wang Z, Kong D, et al. An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries [J]. Journal of Materials Chemistry A, 2018, 6(43): 21280-21286.

[299] Huo H, Sun J, Meng X, He M, Zhao N and Guo X. Flexible interfaces between Si anodes and composite electrolytes consisting of poly (propylene carbonates) and garnets for solid-state batteries [J]. Journal of Power Sources, 2018, 383: 150-156.

[300] Borodin O and Smith GD. LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations [J]. The Journal of Physical Chemistry B, 2006, 110(10): 4971-4977.

[301] Duluard S, Grondin J, Bruneel JL, et al. Lithium solvation and diffusion in the 1‐butyl‐3‐methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid [J]. Journal of Raman Spectroscopy: an International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2008, 39(5): 627-632.

[302] Huang J and Hollenkamp AF. Thermal behavior of ionic liquids containing the FSI anion and the Li+ cation [J]. The Journal of Physical Chemistry C, 2010, 114(49): 21840-21847.

[303] Guo N, Li M, Sun X, Wang F and Yang R. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities [J]. Green Chemistry, 2017, 19(11): 2595-2602.

[304] Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials [J]. Journal of Materials Chemistry A, 2016, 4(25): 9832-9843.

[305] Xia W, Mahmood A, Zou R and Xu Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion [J]. Energy & Environmental Science, 2015, 8(7): 1837-1866.

[306] Zhang W, Tu Z, Qian J, Choudhury S, Archer LA and Lu Y. Design principles of functional polymer separators for high‐energy, metal‐based batteries [J]. Small, 2018, 14(11): 1703001.

[307] Shi Y, Tan D, Li M and Chen Z. Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges [J]. Nanotechnology, 2019, 30(30): 302002.

[308] Choi NS, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double-layer capacitors [J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024.

[309] Hu J, He P, Zhang B, Wang B and Fan L-Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries [J]. Energy Storage Materials, 2020, 26: 283-289.

[310] Scrosati B and Garche J. Lithium batteries: status, prospects and future [J]. Journal of power sources, 2010, 195(9): 2419-2430.

中图分类号:

 TM912    

条码号:

 002000034735    

馆藏号:

 TD10053469    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式