- 无标题文档
查看论文信息

中文题名:

 M型六角铁氧体的多铁性及巨磁电容效应    

姓名:

 盛号号    

学号:

 1049721400483    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 无机非金属材料工程    

第一导师姓名:

 谭国龙    

第一导师院系:

 武汉理工大学    

完成日期:

 2016-05-30    

答辩日期:

 2016-05-20    

中文关键词:

 多铁性材料 ; 六角铁氧体 ; 元素掺杂 ; 磁电耦合    

中文摘要:

多铁性材料是近年来兴起的一种新的磁电功能性材料,能够同时表现出铁电性和铁磁性,并且在铁磁性和铁电性之间会发生耦合效应,因而多铁性材料在信息存储、自旋电子器件、磁传感器以及微波技术等领域有着极其广泛的应用前景。但是,在目前已发现的单相多铁性材料中,大多数材料只能在较低的温度下才能同时表现出铁磁性、铁电性和磁电耦合效应。M型六角铁氧体是一种很典型的磁性材料,它的分子通式是AB12O19,式中:A为Ba、Sr、Pb等半径较大的离子, B为Fe3+ 离子,或者是半径与Fe3+离子半径相接近的其它三价阳离子,整个结构属于六角菱形晶系,所以一般称之为六角铁氧体。近年来,随着材料技术的蓬勃发展,特别是在材料多铁性能上的研究,六角铁氧体逐渐表现出重要的研究价值。本课题组根据多铁性材料研究现状探索新型多铁性材料,通过改善实验方案和利用稀土元素取代方法制备M型六角铁氧体,并实现其在室温下的多铁性和磁电效应。本论文研究了两种M型六角铁氧体的多铁性,通过稀土元素取代对其中一种铁氧体材料进行了改性,主要内容和结果如下:

1. SrFe12O19 陶瓷的制备及多铁性研究

采用聚合物前驱体溶液法合成制备得到了SrFe12O19 粉体,通过陶瓷制备工艺将上述得到的粉体制备出了SrFe12O19 陶瓷,接着对陶瓷样品进行了氧气热处理,得到最终样品。通过XRD图谱可以清楚地分析出SrFe12O19 粉体的物相组成;室温下的铁电测试以及铁磁测试表明SrFe12O19样品表现出良好的铁电性与铁磁性,并且氧处理使得样品的电滞回线不再是“香蕉型”,而是趋于饱和,剩余电极化强度为57.66µC/cm2,矫顽电场强度为10.10kV/m,剩余磁极化强度为32.37emu/g,矫顽磁场强度为5590Oe,相比于未经氧处理的SrFe12O19材料,剩余电极化强度提高了3.8倍,矫顽磁场强度提高了1.3倍;介电性能测试表明SrFe12O19样品是良好的弛豫铁电体,温度上升过程中,介电常数在相变温度附近的变化符合居里-外斯定律。在磁电效应方面,SrFe12O19陶瓷表现出磁电容效应, [ε(B)-ε(0)]/ε(0)%的最大值约为1170%。由实验数据可得,SrFe12O19 陶瓷材料是一种良好的单相多铁性材料,并且氧气热处理这一步骤对于提高SrFe12O19材料的多铁性有很大作用。

2. La0.2Pb0.7Fe12O19 陶瓷的制备及多铁性研究

采用稀土元素取代的方法,向前驱体溶液中加入La(NO3)3的水溶液,合成得到了La0.2Pb0.7Fe12O19 粉体。通过陶瓷制备工艺将上述粉体制备出了La0.2Pb0.7Fe12O19 陶瓷,然后对陶瓷进行氧气热处理,得到最终样品。通过XRD图谱可以清楚地分析出La0.2Pb0.7Fe12O19 粉体的物相组成;室温下的铁电测试以及铁磁测试表明La0.2Pb0.7Fe12O19样品在室温下具有良好的铁电性和铁磁性,并且得到的标准型电滞回线以及I-V曲线中的两个非线性特殊峰,证明了La0.2Pb0.7Fe12O19陶瓷的铁电性是由于其自身的极化而产生; La0.2Pb0.7Fe12O19陶瓷样品的介电性能测试表明实验制备得到的La0.2Pb0.7Fe12O19陶瓷是良好的弛豫铁电体,并进一步证明了La0.2Pb0.7Fe12O19材料的本征铁电性。掺杂取代改性之后的La0.2Pb0.7Fe12O19材料的剩余极化强度为132.25μC/cm2,矫顽电场强度为19.8kV/m,剩余磁极化强度为30.1emu/g,矫顽磁场强度为3439.2Oe,相比于PbFe12O19材料,La0.2Pb0.7Fe12O19的剩余电极化强度提高了1.27倍,矫顽电场提高了1.3倍,矫顽磁场提高了1.48倍。在磁电效应方面,La0.2Pb0.7Fe12O19陶瓷不但表现出磁电耦合效应,同时也表现出巨磁电容效应,耦合电压最大为26.5mV,[ε(B)-ε(0)]/ε(0)%的最大值约为190000%。

参考文献:

[1] Nicola A. Hill. Why are there so few magnetic ferroelectrics [J], J. Phys. Chem. B, 2000(104):6694.

[2] 金泽平. 多铁性材料BiFeO3的制备与性能表征. 兰州大学 硕士学位论文 2008.

[3] 韩建涛 新型磁电功能化合物的制备和表征 [D]. 上海:复旦大学,2007.

[4] M. Yamamoto, H. Ohta, K. Koumoto. Thermoelectric phase diagram in a

CaTiO3-SrTiO3-BaTiO3 system [J], Applied Physics Letters, 2007 (90):072101.

[5] S. Tangjuank, T. Tunkasiri, Characterization and properties of Sb-doped BaTiO3 powders [J], Applied Physics Letters, 2007 (90):072908.

[6] G. B. Stephenson, K. R. Elder. Theory for equilibrium 180 degrees stripe domains in PbTiO3 films [J], Journal of Applied Physics, 2006(100):051601.

[7] J. S. Patwardhan, M. N. Rahaman. Compositional effects on densification and microstructural evolution of bismuth titanate [J], Journal of Materials Science, 2004(39):133.

[8] Y. Zhang, H. Wang, S. X. Shang, X. H. Xu, X. N. Yang, W. M. Liu. X-ray photoelectron

spectroscopy study of La-modified Bi2Ti2O7 thin film [J], Materials Letters, 2004(58):1056.

[9] 刘朝霞. 单相多铁性材料BiFeO3的溶胶凝胶法制备与表征[D]. 河南:河南大学 2007.

[10] 曾灏宪,王秀杰,郭鹏. 铁磁成分变化对复合型多铁性材料磁电效应的影响 中原大学报,2010(21):76.

[11] 苗兰冬,宋功保,王美丽,李建. 浅谈多铁性材料 [J],中国陶瓷工业,2006(6):39.

[12] J. Valasek, Phys. Rev. 1921(17):475.

[13] 晏伯武. 多铁性材料及其研究进展[J]. 现代技术陶瓷. 2009 (30):19.

[14] M. K. Singh, Y. Yang, C. G. Takoudis. Synthesis of multifunctional multiferroic materials from metalorganics [J], Coorination Chemistry Reviews, 2009(253):2920.

[15] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science. 2003,299(5613):1719-22.

[16] X. G. Wang, J. M. Dong, M. C. Qian, et al. Nonlinear optical properties of perovskite YmnO3 studied by real-space recursion method [J]. Phys.Rev.B, 2000,61:10664

[17] C. J. Wang, C. G. Guang, L. X. He, Ferroelectricity driven by the noncentrosymmetric magnetic ordering in multiferroic TbMn2O5: A First-Principles Study [J]. Phys. Rev. Lett. 2007, 99: 177202

[18] Y. P. Wang, L. Zhou, M. F. Zhang, et al. Room-temperature saturated ferroelectric

polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering [J], Appl. Phys.

Lett. 2004(84):1731.

[19] J. Yu, J. H. Chu. Progress and prospect for high temperature single-phased magnetic ferroelectrics [J], Chinese Science Bulletion. 2008(53):2097.

[20] M. Fiebig, N. A. Spadin. Current trends of the magnetoelectric effect [J], The European Physical Journal B. 2009(71):293.

[21] 徐任信,王均,周静等. 室温磁电材料的制备与性能[J],材料导报. 2008(22):8.

[22] L. Chen, W. Ren, W. M. Zhu, et al. Improved dielectric and ferroelectric properties in Ti-doped BiFeO3-PbTiO3 thin films prepared by pulsed laser deposition[J]. Thin Solid Films, 2010, 518(6): 1637.

[23] Y. H. Lee, J. M. Wu, C. H. Lai. Influence of La doping in multiferroic properties of BiFeO3 thin films[J]. Appl Phys Lett, 2006, 88: 042903.

[24] Z. Alexandre. Ferroelectric and dielectric behaviour of Bi0.92La0.08FeO3 multiferroic thin films prepared by soft chemistry route [J], J S01-Gel Sci Technol. 2007(44):269.

[25] Y. W. Li, J. Q. Xue, J. L. Sun, et al. Infrared optical properties of BiFeO3 thin films prepared by chemical solution deposition [J], Appl Phys, 2007(87):125.

[26] 訾玉宝,焦兴利,王海峰等. Mn掺杂对多铁性BiFeO3薄膜铁电性能以及漏电流的影响[J]. 低温物理学报,2009,31(40):280.

[27] M. Azuma, H. Kanda, A. A. Belik, et al. Magnetic and structural properties of BiFe1-xMnxO3 [J]. J Magn Magn Mater, 2007 310(2): 1177.

[28] 常方高,张娜,杨枫等. B位Cr替代对BiFeO3介电特性的影响[J]. 功能材料,2007,38(增刊): 456.

[29] H. R. Liu, Y. X. Sun. Substantially enhanced ferroelectricity in Ti doped BiFeO3 films[J]. J Phys D: Appl Phys, 2007 40(23): 7530.

[30] 郑朝丹,张端明,刘心明等. Ti掺杂BiFeO3陶瓷的结构和铁电性能研究[J]. 无机材料学报,2009 24(4): 745.

[31] 王辽宇,曹庆琪,王敦辉等. 六角铁氧体的多铁性[J]. 中国材料进展,2013 32(2):74

[32] K. Taniguchi, N. Abe, H. Umetsu, et al. Control of the magnetoelectric domain-wall stability by a magnetic field in a multiferroic MnWO4[J]. Phys Rev Lett, 2008 101: 207205.

[33] S. H. Chun, Y. S. Chai, Y. S. Oh, et al. Realization of giant magnetoelectricity in helimagnets [J]. Phys Rev Lett. 2010 104: 037204.

[34] M. Soda, T. Ishikura, H. Nakamura, et al. Magnetic ordering in relation to the room temperature magnetoelectric effect of Sr3Co2Fe24O41[J]. Phys Rev Lett, 2011 106: 087201

[35] 王志强.M型永磁铁氧体微粉形态结构及磁性能工[D],兰州:兰州大学,2009.

[36] Pablo Hernandez-Gomez, Carlos Torres, et al. Influence of stoichiometry on the magnetic accommodation in M-type Sr-hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 2004 272-276: el843.

[37] G. L. Tan, W. LI. Ferroelectricity and ferromagnetism of M-type lead hexaferrite[J]. J Am Ceram Soc. 2015 98(6): 1812.

[38] S. E. Jacobo, L. Civale, M. A. Blesa. Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (VI) solutions[J]. J Magn Magn Mater. 2003 260(1-2):37.

[39] S. A. Oliver, M. L. Chen, I. Kozulin, C. Vittoria. Structure and magnetic properties of barium hexaferrite films deposited at low oxygen pressures[J]. J Magn Magn Mater. 2000 213(3):326.

[40]Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura, Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity.[J]. Phys Rev Lett, 2010, 105:135-141.

[41] R.Grossinger, et al. Magnetic properties of a new family of rare-earth substituted ferrites[J]. Physica B, 2003 327: 202.

[42] X.S. Liu, W. Zhong, S. Yang, Z. Yu, B. X. Gu, Y. W. Du, Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites[J]. J Magn Magn Mater, 2002 238, 207.

[43] 王敏,多铁性材料的制备及性能表征[D],武汉:武汉理工大学,2011

[44] X. Y. Zhang, C. W. Lai, X. Zhao, D. Y. Wang, J. Y. Dai. Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays [J]. Applied Physics Letters. 2005 (87):143102.

[45] Y. H. Huang, H. Fjellvag, M. Karppinen, B. C. Hauback, H. Yamauchi, J. B. Goodenough. Crystal and magnetic structure of the orthorhombic pervskite YbMnO3 [J], Chemistry of Materials. 2006 (18):2130.

[46] Y. Murakami, J. P. Hill, D. Gibbs, M. Blume, I. Koyama, M. Tanaka, H. Kawata, et al. Resonant X-ray scattering from orbital ordering in LaMnO3 [J], Physical Review Letters, 1998 (81):582.

[47] M. Fiebig. TOPICAL REVIEW: Revival of the magnetoelectric effect[J]. Journal of Physics D Applied Physics, 2005, 38(8)

[48] S. R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, A. O. Adeyeye. Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process[J]. Appl Phys Lett. 2007 90(2).

[49] G. Srinivasan, E. T. Rasmussen, R. Hayes. Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites[J]. Physical Review B Condensed Matter. 2003 67(1):253.

[50] 刘亚丕,何时金,包大新等. 永磁材料的发展趋势[J]. 磁性材料及器件,2003 34:41

[51] 陈秀娜,单相多铁性材料的制备及磁电性能[D],武汉:武汉理工大学,2012

[52] G. L. Tan, X. N. Chen. Synthesis, structures, and multiferroic properties of strontium hexaferrite ceramics[J]. J Electron Mater. 2013 42(5): 906-11

[53] G. L. Tan, M. Wang. Multiferroic PbFe12O19 ceramics[J], Journal of Electroceramics, 2011 (10): 275

[54] 李威,M-型六角铁氧体的多铁性能研究[D],武汉:武汉理工大学,2015

[55] G. L. Tan, X. N. Chen, Structure and multiferroic properties of barium hexaferrite ceramics, J. Magnetism and Magnetic Materials 2013 (327)87.

[56] P. Liu, X. B. Bian, L. Y. Zhang, and X. Yao, The phase transformation, dielectric and pyroelectric properties of (PbBa)(Zr,Sn,Ti)O3 solid solutions with compositions near AFE/RFE phase boundary, Acta Physica Sinica, 2001 (7), 1628.

[57]王俊玲, 王添文, 李永卿等. 磁性材料磁导率的测量及其分析[C],全国电磁兼容学术会议. 2007.

中图分类号:

 TM277    

馆藏号:

 TM277/0483/2016    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式