- 无标题文档
查看论文信息

中文题名:

 

基于OpenSees的双柱式预应力节段拼装桥墩抗震性能研究

    

姓名:

 占诗棋    

学号:

 1049732002964    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 交通与物流工程学院    

专业:

 土木水利    

研究方向:

 桥梁抗震    

第一导师姓名:

 邓育林    

第一导师院系:

 交通与物流工程学院    

第二导师姓名:

 陈泉    

完成日期:

 2023-03-21    

答辩日期:

 2023-05-19    

中文关键词:

 

节段拼装桥墩 ; 排架式 ; 自复位性能 ; 地震响应 ; 损伤分析

    

中文摘要:

节段拼装桥墩因其施工速度快、对周围环境影响小等特点在桥梁建设中存在明显优势,目前对于该类桥墩的抗震性能研究尚不完善,而我国地处世界两大地震带之间,地震活动频繁,根据地震烈度区划显示,我国有一半以上的城市位于地震基本烈度7度及7度以上区域,这严重限制了节段拼装桥墩在桥梁建设中的应用。现如今对于节段拼装桥墩的抗震性能研究大多局限于单柱式桥墩,而实际工程中却多以双柱及多柱式桥墩为主,所以对双柱式预应力节段拼装墩桥梁抗震性能以及震后自复位性能的研究具有重要的工程意义。在此背景下,本文结合已有研究和典型工程实例,对双柱式预应力节段拼装桥墩的抗震性能展开研究。阐述了节段拼装桥墩的数值模拟方法;通过双柱式桥墩拟静力分析,比较了节段拼装桥墩与整体现浇桥墩在顺桥向以及横桥向上的抗震性能;采用全桥非线性时程分析,分别从桥墩变形与自复位能力两个方面,对比了在不同水平地震作用下,节段拼装桥墩与整体现浇桥墩在全桥体系中的地震响应以及损伤情况,对两种桥墩抗震性能进行了评估。主要研究内容及成果如下:

(1)结合已有的拟静力试验研究,基于OpenSees数值模拟平台,采用基于零长度截面单元的纤维有限元模型对预应力节段拼装墩进行模拟,对比试验结果验证了数值模型的可行性。结果表明该方法可以达到对预应力节段拼装墩的模拟,为后文对双柱式预应力节段拼装桥墩的数值模拟和进一步的抗震性能分析奠定了基础。

(2)结合工程实例,建立单墩纤维有限元模型,通过拟静力分析方法和给出的抗震性能表征参数,比较了节段拼装桥墩与整体现浇桥墩在顺桥向以及横桥向上的抗震性能。结果表明,节段拼装桥墩拥有更大的墩顶位移,其滞回曲线在一定的位移幅值下可以保持“旗帜型”,在该位移范围内具有明显的自复位特性,相比于整体现浇桥墩,等效粘滞性阻尼比和残余位移相对减小;但其耗能能力、水平承载力及初始刚度要弱于整体现浇桥墩。

(3)以三联多跨连续梁桥为背景,分别建立了采用节段拼装桥墩和整体现浇桥墩的全桥有限元模型,分别建立了基于变形和自复位能力的桥墩损伤指标,选取多条实测地震加速度时程,将其峰值加速度(PGA)分别调整至不同水平,采用非线性时程分析,以整体现浇桥墩作为对比,研究了不同水平地震作用下节段拼装桥墩在全桥体系中的地震响应以及损伤情况。结果表明,在选定的地震波及桥墩损伤指标下,节段拼装桥墩的位移响应更大,但残余位移要明显小于整体现浇桥墩;无论采用位移延性还是残余位移损伤指标,在相同水平地震作用下,节段拼装桥墩的损伤程度更低。

参考文献:

[1] Billington S L, Barnes R W, Breen J E. Alternate substructure systems for standard highway bridges[J]. Journal of Bridge Engineering, 2001, 6(2): 87-94.

[2] Li G, Yang D, Lei Y. Combined shear and bending behavior of joints in precast concrete segmental beams with external tendons[J]. Journal of Bridge Engineering, 2013, 18(10): 1042-1052.

[3] Tuttle J M. Surveys for the Lake Pontchartrain Bridge[J]. Transactions of the American Society of Civil Engineers, 1963, 128(4): 42-53.

[4] 郭利夫. 积水潭立交桥施工技术小结[J].市政技术, 1994(Z1): 57-61.

[5] Billington S L, Barnes R W, Breen J E. A precast segmental substructure system for standard bridges[J]. PCI journal, 1999, 44(4): 56-73.

[6] Chou C C, Chen Y C. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake engineering & structural dynamics, 2006, 35(2): 159-175.

[7] Dawood H, ElGawady M, Hewes J. Behavior of segmental precast posttensioned bridge piers under lateral loads[J]. Journal of Bridge Engineering, 2012, 17(5): 735-746.

[8] 叶爱君,管仲国. 桥梁抗震[M]. 北京:人民交通出版社. 2011.9:121.

[9] 葛继平,闫兴非,王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J].交通运输工程学报, 2018, 18(02): 42-52.

[10] 沈阳云. 东海大桥墩身节段预制安装的关键技术[J].公路, 2005(08): 7-12.

[11] Matsumoto E E. Emulative precast bent cap connections for seismic regions: component tests-cap pocket full ductility specimen (unit 3)[R]. Report No. ECS-CSUS-2009-03, California State University, Sacramento, CA, 2009.

[12] 姜海西,卫张震. 承插式预制拼装桥墩抗震性能研究综述[J].城市道桥与防洪, 2017(12): 56-59.

[13] Darwin D and Zavaregh S S. Bond strength of grouted reinforcing bar[J]. ACI Structural Journal, 1996, 93(4): 486-495.

[14] Culmo M P. Connection details for prefabricated bridge elements and systems[R]. United States. Federal Highway Administration. Office of Bridge Technology, 2009.

[15] 张鹤. 上海嘉闵高架工程预制立柱现场安装定位技术[J].中国市政工程, 2016(04): 59-61.

[16] 刘志杭,卓为顶,宋万里,刘钊,俞章宽. 西曲阜大桥预制与现浇墩柱抗震性能对比试验研究[J].山东交通学院学报, 2018, 26(04): 57-63.

[17] 王志强,葛继平,魏红一. 东海大桥预应力混凝土桥墩抗震性能分析[J].同济大学学报(自然科学版), 2008(11): 1462-1466.

[18] 曾平喜,唐衡,冯永明. 杭州湾跨海大桥预制墩身施工技术[C].中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集, 2005: 521-533.

[19] Doiron G. Pier repair/retrofit using UHPC—examples of completed projects in north America[C].International Interactive Symposium on Ultra-High Performance Concrete. Iowa State University Digital Press, 2016, 1(1).

[20] Brenes F J. Anchorage of grouted vertical duct connections for precast bent caps[M]. The University of Texas at Austin, 2005.

[21] Khaleghi B, Schultz E, Seguirant S, et al. Accelerated bridge construction in Washington State: From research to practice[J]. PCI journal, 2012, 57(4).

[22] 卓为顶. 配置高强钢筋的预制拼装桥墩滞回性能与自恢复特性研究[D].东南大学, 2019.

[23] 郭益明. 预制节段拼装桥墩抗震性能研究[D].重庆交通大学, 2018.

[24] Marsh M L. Application of accelerated bridge construction connections in moderate-to-high seismic regions[M]. Transportation Research Board, 2011.

[25] Ou Y C. Precast segmental post-tensioned concrete bridge columns for seismic regions[M]. State University of New York at Buffalo, 2007.

[26] 刘阳. 预制拼装双柱式桥墩抗震性能及设计方法研究[D].长安大学, 2021.

[27] 朱治宝,刘英. 跨海大桥大型预制墩柱的施工技术[J].桥梁建设, 2004(05): 50-52.

[28] Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design[M]//Seismic resistance of bridge piers based on damage avoidance design. 1997: 109-109.

[29] Hewes J T. Seismic design and performance of precast concrete segmental bridge columns[M]. University of California, San Diego, 2002.

[30] Palermo A, Pampanin S, Marriott D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007, 133(11): 1648-1661.

[31] Kim T H, Lee H M, Kim Y J, et al. Performance assessment of precast concrete segmental bridge columns with a shear resistant connecting structure[J]. Engineering Structures, 2010, 32(5): 1292-1303.

[32] Sideris P, Aref A J, Filiatrault A. Large-scale seismic testing of a hybrid sliding-rocking posttensioned segmental bridge system[J]. Journal of Structural Engineering, 2014, 140(6): 04014025.

[33] Mantawy I M, Thonstad T, Sanders D H, et al. Seismic performance of precast, pretensioned, and cast-in-place bridges: Shake table test comparison[J]. Journal of Bridge Engineering, 2016, 21(10): 04016071.

[34] Shafieifar M, Farzad M, Azizinamini A. Investigation of a detail for connecting precast columns to precast cap beams using ultrahigh-performance concrete[J]. Journal of bridge engineering, 2020, 25(3): 04020001.

[35] 葛继平. 节段拼装桥墩抗震性能试验研究与理论分析[D].上海:同济大学, 2008.

[36] Ou Y C, Wang P H, Tsai M S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of structural engineering, 2010, 136(3): 255.

[37] Bu Z Y, Ou Y C, Song J W, et al. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section[J]. Journal of Bridge Engineering, 2016, 21(2): 04015043.

[38] 黄金帅. 节段拼装混凝土双柱墩抗震性能振动台试验研究[D].福州大学, 2017.

[39] 刘雪山,李建中,张宏杰,陈子阳. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J].中国公路学报, 2021, 34(11): 116-128.

[40] Hieber D G, Wacker J M, Eberhard M O, et al. State-of-the-art report on precast concrete systems for rapid construction of bridges[J]. 2005.

[41] Motaref S. Seismic response of precast bridge columns with energy dissipating joints[M]. University of Nevada, Reno, 2011.

[42] Nikbakht E, Rashid K, Hejazi F, et al. A numerical study on seismic response of self-centring precast segmental columns at different post-tensioning forces[J]. Latin American Journal of solids and structures, 2014, 11: 864-883.

[43] Esfahani M H, Hejazi F, Vaghei R, et al. Development of constitutive model for precast prestressed concrete segmental columns[J]. Modelling and Simulation in Engineering, 2016:1-11.

[44] Ahmadi E, Kashani M M. Numerical investigation of nonlinear static and dynamic behaviour of self-centring rocking segmental bridge piers[J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105876.

[45] Ou Y C, Chiewanichakorn M, Aref A J, et al. Seismic performance of segmental precast unbonded posttensioned concrete bridge columns[J]. JOURNAL OF STRUCTURAL ENGINEERING-NEW YORK-, 2007, 133(11): 1636.

[46] 布占宇,唐光武. 无黏结预应力带耗能钢筋预制节段拼装桥墩抗震性能研究[J].中国铁道科学, 2011, 32(03): 33-40.

[47] 虎良. 节段拼装钢管混凝土桥墩抗震性能理论研究[D].清华大学, 2012.

[48] 刘诗文. 改善节段拼装桥墩抗震性能构造措施的研究[D].大连理工大学, 2016.

[49] Cai Z K, Zhou Z, Wang Z. Influencing factors of residual drifts of precast segmental bridge columns with energy dissipation bars[J]. Advances in Structural Engineering, 2019, 22(1): 126-140.

[50] Tong T, Yuan S, Zhuo W, et al. Experimental and numerical investigations on cyclic behaviors of precast segmental bridge piers with the hybrid of high-strength bars and unbonded prestressing tendons[J]. Advances in Structural Engineering, 2021, 24(3): 509-521.

[51] Marriott D, Pampanin S, Palermo A. Quasi‐static and pseudo‐dynamic testing of unbonded post‐tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake engineering & structural dynamics, 2009, 38(3): 331-354.

[52] ElGawady M A, Sha’lan A. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2011, 16(3): 328-339.

[53] ElGawady M A, Dawood H M. Analysis of segmental piers consisted of concrete filled FRP tubes[J]. Engineering Structures, 2012, 38: 142-152.

[54] Thonstad T, Mantawy I M, Stanton J F, et al. Shaking table performance of a new bridge system with pretensioned rocking columns[J]. Journal of Bridge Engineering, 2016, 21(4): 04015079.

[55] Mohebbi A, Saiidi M S, Itani A M. Shake table studies and analysis of a PT-UHPC bridge column with pocket connection[J]. Journal of Structural Engineering, 2018, 144(4): 04018021.

[56] Upadhyay A, Pantelides C P. Fragility-informed seismic design of multi-column bridge bents with post-tensioned concrete columns for accelerated bridge construction[J]. Engineering Structures, 2022, 269: 114807.

[57] 葛继平,魏红一,王志强. 循环荷载作用下预制拼装桥墩抗震性能分析[J].同济大学学报(自然科学版), 2008(07): 894-899.

[58] 展丙来. 节段拼装双柱式墩桥梁抗震性能及设计方法研究[D].长安大学, 2017.

[59] 耿波,张于晔,秦明霞,翟勇. 预制节段拼装桥墩的地震损伤指标研究[J].公路工程, 2019, 44(05): 4-8+41.

[60] Li S, Zhao T, Alam M S, et al. Probabilistic seismic vulnerability and loss assessment of a seismic resistance bridge system with post-tensioning precast segmental ultra-high performance concrete bridge columns[J]. Engineering Structures, 2020, 225: 111321.

[61] 孙治国,赵泰儀,韩强,王东升,亓兴军. 摇摆-自复位双层桥梁排架墩抗震体系研究[J].振动工程学报, 2021, 34(03): 472-480.

[62] 赵建锋,刘雪飞,孟庆一,李晰. 外置可更换耗能装置的节段拼装CFST桥墩抗震性能分析[J].西南交通大学学报, 2022, 57(05): 1113-1121+1145.

[63] 贾俊峰,谭豫卿,白玉磊,程寿山,李逸松. 基于OpenSees仿真的自复位预制装配RC桥墩抗震性能分析[J].应用基础与工程科学学报, 2022, 30(02): 328-340.

[64] Scott B D, Park R , Priestley M. Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J]. Aci Journal, 1982, 79(1):13-27.

[65] Mander J, Priestley M. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.

[66] Zhao, J, and S. Sritharan. Modeling of strain penetration effects in fiber-based analys-is of reinforced concrete structures. ACI Structural Journal, 2007, 104(2):133-141.

[67] Park R. Evaluation of Ductility of Structures and Structural Assemblages from Labor-atory Testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3):155-166.

[68] 中华人民共和国交通运输部. (JTGT 2231-01-2020). 公路桥梁抗震设计规范[S]. 人民交通出版社, 2020.

[69] Hose Y, Silva P, Seible F. Development of a Performance Evaluation Database for Concrete Bridge Components and Systems under Simulated Seismic Loads[J].Earthquake Spectra,2000: 413-442.

[70] 葛雄. 地震作用下多跨连续梁桥横向碰撞效应及损伤控制研究[D].武汉理工大学, 2021.

[71] Muntasir Billah A H M, Alam M S. Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy[J]. Earthquake Spectra, 2015, 31(3): 1515-1541.

[72] Shrestha B, Li C, Hao H, et al. Performance-based seismic assessment of superelastic shape memory alloy-reinforced bridge piers considering residual deformations[J]. Journal of Earthquake Engineering, 2017, 21(7): 1050-1069.

中图分类号:

 U442.5    

条码号:

 002000074465    

馆藏号:

 YD10002524    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式