- 无标题文档
查看论文信息

中文题名:

 基于LTE-A的D2D通信系统干扰抑制技术研究    

姓名:

 张伟    

学号:

 1049721203087    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0810    

学科名称:

 信息与通信工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 信息工程学院    

专业:

 信息与通信工程    

研究方向:

 宽带无线通信    

第一导师姓名:

 李平安    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-10    

答辩日期:

 2015-05-10    

中文关键词:

 LTE-A ; Device-to-Device ; 干扰抑制 ; 资源分配 ; 功率控制    

中文摘要:

随着蜂窝通信系统的不断演进与发展,LTE-A标准的提出对信道带宽、频谱效率、传输质量、传输时延的要求进一步提高。在当前用户数量急剧增加,小区负载沉重的网络环境下以基站为核心的蜂窝通信系统面临着严峻的挑战。D2D(Device-to-Device)通信技术以其高频谱利用率,大传输速率的优势为解决蜂窝网络频谱资源匮乏问题以及突破传输速率瓶颈带来了新的思路。D2D通信可在一定距离范围内不经过基站转发直接传输数据,减少了传输时延,同时还可以复用蜂窝用户资源进行通信,极大地提高了传输速率和频谱利用率。然而D2D通信通过复用蜂窝资源提升系统性能的同时也带来了系统内的同频干扰,如果不加以抑制,会对双方的通信质量造成严重的影响。

本文在研究LTE-A与D2D混合通信系统网络架构的基础上,通过系统建模分析了D2D通信复用蜂窝资源的各种干扰场景,总结出影响干扰的主要因素,进而针对这些因素分别从资源分配和功率控制的角度进行干扰抑制。本文在多种网络场景下对D2D与蜂窝混合通信系统中的干扰抑制问题进行研究,主要工作包括:

从增加干扰双方距离这个角度出发,考虑了小区间干扰,分析了现有基于干扰限制区域(ILA)的资源分配算法无法根据信道状态灵活改变复用资源数量的缺点,设计出改进型基于动态干扰限制区域(DILA)的复用多用户资源算法;

从控制 D2D用户发射功率的角度出发,分析了现有闭环功率控制算法不能根据用户位置信息为用户分配合适的路损补偿因子的不足,在此基础上设计了改进型基于动态补偿因子的功率控制算法;

改进原有LTE-A系统级仿真平台,增加D2D协议栈功能实体,设计了D2D与LTE-A混合通信网络系统级仿真平台,并分别对本文所设计的功率控制算法和资源分配算法进行仿真分析。通过仿真证明本文所提出的算法在性能上较改进之前的算法有所提高。

参考文献:

[1] S. Mumtaz, J. Rodriguez, Aveiro, Portugal. Smart Device to Smart Device Communication[M]. Switzerland: Springer International, 2014.

[2] IEEE. 802. 16e-2005. Part16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems-Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Band[S]. IEEE Std, 2005.

[3] 3GPP. TS 36.213 v. 10.5.0. Physical layer procedures (Release 10) for Evolved Universal Terrestrial Radio Access (E-UTRA)[S]. France: Sophia-Antipolis, 2012.

[4] Y. D. Lin, Y. C. Hsu. Multihop cellular: A new architecture for wireless communications[J]. Proc. IEEE INFOCOM, vol. 3, 2000: 1273-1282.

[5] H Wu, C Qiao, S De, et al. Integrated cellular and ad hoc relaying systems: iCAR[J]. IEEE J. Sel Areas Commun. 19(10), 2001: 2105-2115.

[6] P Janis, C. H Yu, K Doppler, et al. Device-to-Device communication underlaying cellular communications Systems[J]. Int. J. Commun. Netw. Syst. Sci. (SciRes). 3, 2009: 169-178.

[7] K Doppler, M Rinne, C Wijting, et al. Device-to-Device communication as an underlay to LTE-advanced network[J]. IEEE Commun. Mag. 47(12), 2009: 42-49.

[8] k Doppler, C Wijting, R Cassio. Apparatuses and computer program products for providing coordination of device-to-device communications[J]. US Patent Application. WO 2009/138820 A1, Methods, 2009.

[9] K Doppler, T Koskela, C Riberio Enabling Device-to-device communications in cellular networks[J]. US Patent Application. WO 2010/082114 A1, 2010.

[10] T Koskela, S Hakola, T Chen, et al. Clustering concept using device-to-device communication in cellular system[C]. IEEE Wireless Communications and Networking Conference(WCNC), 2010.

[11] S Hakola, T Chen, J Lehtomaki, et al. Device-to-Device(D2D) communication in cellular network-performance analysis of optimum and practical communication mode selection[C]. IEEE Wireless Communications and Networking Conference(WCNC), 2010.

[12] C. H. Yu, K Doppler, C. B Riberio, et al. Resource sharing optimization for device-to-device communication underlaying cellular networks[J]. IEEE Trans. Wirel. Commun. 10(8), 2011: 2752-2763.

[13] B. Kaufman, B. Aazhang. Cellular networks with an overlaid device-to-device network[C]. Proc. Asilomar Conf. Signals, Syst. Comput, 2008: 1537-1541.

[14] K. Doppler, M. Rinne, P. Janis, et al. Device-to-Device communications; functional Prospects for LTE-Advanced networks[C]. IEEE ICC Workshops, 2009: 1-6.

[15] A Osseiran, et al. Advances in device-to-device communications and network coding for IMT-Advanced[C]. Proc. ICT Mobile Summit, 2009: 1-8.

[16] T. Peng, Q. Lu, H. Wang, et al. Interference avoidance mechanisms in the hybrid cellular and device-to-device systems[C]. Proc. IEEE PIMRC, 2009: 617-621.

[17] J. Du, W. Zhu, J. Xu, et al. A compressed HARQ feedback for device-to-device multicast communications[C]. Proc. IEEE VTC-Fall, 2012: 1-5.

[18] B. Zhou, H. Hu, S. Q. Huang, et al. Intracluster device-to-device relay algorithm with optimal resource utilization[J]. IEEE Trans. Veh. Technol, vol. 62, no. 5, 2013: 2315-2326.

[19] L. Lei, Z. zhong, C. Lin, et al. Operator controlled device-to-device communications in LTE-advanced networks[J]. IEEE Wireless Commun. Vol. 19, no. 3, 2012: 96-104.

[20] N. Golrezaei, A. F. Molisch, A. G. Dimakis, Base-station assisted device-to-device communications for high-throughput wireless video networks[C]. Proc. IEEE ICC, 2012: 7077-7081.

[21] N. Golrezaei, A. G. Dimakis, A. F. Molisch. Device-to-Device collaboration through distributed storage[J]. Proc. IEEE GLOBECOM, 2012: 2397-2402.

[22] J. C. Li, M. Lei, F. Gao. Device-to-Device(D2D) communication in MU-MIMO cellular networks[J]. Proc. IEEE GLOBECOM, 2012: 3583-3587.

[23] N. K. Pratas, P. Popovski. Low-rate machine-type communication via wireless Device-to-Device(D2D) links. arXiv preprint arXiv: 1305.6783[P], 2013.

[24] X. Bao, U. Lee, I. Rimac, et al. DataSpotting: Offloading cellular traffic via managed device-to-device data transfer at data spots[J]. ACM SIGMOBILE Mobile Comput. Commun. Rev., vol.14, no. 3, 2010: 37-39.

[25] X. Wu, et al. FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks[C]. Proc. Allerton Conf. Commun., Control, Computing, 2010: 514-521.

[26] 3GPP. TR 22.803 v. 12.2.0. Feasibility Study for Proximity Services(ProSe) (Release 12)[S]. France: Sophia-Antipolis, 2012.

[27] 3GPP. TR 23.703 v. 1.0.0. Study on Architecture Enhancements to Support Proximity Services(ProSe) (Release 12)[S]. France: Sophia-Antipolis, Dec. 2013.

[28] X. Lin, J. G. Andrews, A. Ghosh, et al. An overview of 3GPP device-to-device proximity services[J]. IEEE Commun. Mag., vol. 52, no. 4, 2014: 40-48.

[29] C. H. Yu, K. Doppler, C. B. Ribeiro, et al. Performance impact of fading interference to device-to-device communication underlaying cellular networks[C]. Proc. IEEE PIMRC, 2009: 858-862.

[30] C. Xu, et al. Interference-aware resource allocation for device-to-device communications as an underlay using sequential second price auction[C]. Proc. IEEE ICC, 2012: 445-449.

[31] S. Xu, H. Wang, T. Chen, et al. Effective interference cancellation scheme for device-to-device communication underlaying cellular networks[C]. Proc. IEEE VTC-Fall, 2010: 1-5.

[32] W. Xu, et al. Performance enhanced transmission in device-to-device communications: Beamforming or interference cancellation?[J]. Proc. IEEE GLOBECOM, 2012: 4296-4301.

[33] R. Zhang, X. Cheng, L. Yang, et al. Interference-aware graph based resource sharing for device-to-device communications underlaying cellular networks[C]. Proc. IEEE WCNC, 2013: 140-145.

[34] P. Janis, et al. Interference-aware resource allocation for device-to-device radio underlaying cellular networks[C]. Proc. IEEE VTC-Spring, 2009: 1-5.

[35] H. Min, J. Lee, S. Park, et al. Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks[J]. IEEE Trans. Wireless Commun., vol. 10, no. 12, 2011: 3995-4000.

[36] H. E. Elkotby. K. M. Elsayed, M. H. Ismail. Exploiting interference alignment for sum rate enhancement in D2D-enabled cellular networks[C]. Proc. IEEE WCNC, 2012: 1624-1629.

[37] Y. Pei, Y. C. Liang. Resource allocation for device-to-device communication overlaying two-way cellular networks[J]. IEEE Trans. Wireless Commun., vol. 12, no.7, 2013: 3611-3621.

[38] X. Xiao, X. Tao, J. Lu. A QoS-aware power optimization scheme in OFDMA systems with integrated device-to-device(D2D) communications[C]. IEEE Vehicular Technology Conference(VTC Fall), 2011: 1-5.

[39] H. Wang, X. Chu. Distance-constrained resource-sharing criteria for device-to-device communications underlaying cellular networks[J]. Electronics letters, 48(9), 2012: 528-530.

[40] M. Zulhasnine, C. Huang, A. Srinivasan. Efficient resource allocation for device-to-device communication underlaying LTE network[C]. IEEE Wireless and Mobile Computing, Networking and Communications(WiMob), 2010: 368-375.

[41] C. H. Yu, O. Tirkkonen, K. Doppler, et al. On the Performance of Device-to-Device Underlay Communication with Simple Power Control[C]. IEEE 69th Vehicular Technology Conference, Apr, 2009: 1-4.

[42] G. Fodor, N. Reider. A Distributed Power Control Scheme for Cellular Network Assisted D2D Communications[C]. IEEE, 2011.

[43] C. H. Yu, O. Tirkkonen, K. Doppler, et al. Power optimization of device-to-device communication underlaying cellular communication[C]. IEEE International Conference on Communications, 2009: 1-5.

[44] H. Xing, S. Hakola. The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system[C]. IEEE International Symposium on Personal Indoor and Mobile Radio Communications. 2010: 1775-1780.

[45] M. G. da S Rego, T. F. Maciel, H. de H M Barros, et al. Performance analysis of power control for device-to-device communication in cellular MIMO systems[C].IEEE International Symposium on Wireless Communication Systems, 2012: 336-340.

[46] Wi-Fi Peer-to-Peer(P2P) Specification[S]. v1.1, Wi-Fi Alliance, vol. 1, 2010: 1-159.

[47] Bluetooth. Bluetooth Specification[S]. Version 1.1, 2001. [Online]. Available: Http://www.bluetooth.com.

[48] 3GPP. TS 36.401. Architecture Description for Evolved Universal Terrestrial Radio Access Network(E-UTRAN) (Release 11)[S]. 3GPP, 2012. Available: http://www.3gpp.org.

[49] Nokia Corporation. Method and apparatus for providing interference measurement for D2D communication [P]. Pub. No: US 2010/0093364 A1, Apr, 2010.

[50] 彭涛,漆渊. IMT-Advanced D2D通信无线资源共享方式[M]. 北京邮电大学, 2012年7月.

[51] G. Boudreau, J. Panicker, N. Guo, et al. Interference coordination and cancellation for 4G networks. IEEE Commun[J]. Mag., vol. 47, no.4, 2009: 74-81.

中图分类号:

 TN929.5    

馆藏号:

 TN929.5/3087/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式