- 无标题文档
查看论文信息

中文题名:

 

升船机船厢门锁定机构液压系统内泄漏故障诊断方法研究

    

姓名:

 杨博    

学号:

 1049732003927    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085206    

学科名称:

 工学 - 工程 - 动力工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 船海与能源动力工程学院    

专业:

 能源动力    

研究方向:

 故障诊断方法    

第一导师姓名:

 邓义斌    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-03-19    

答辩日期:

 2023-05-12    

中文关键词:

 

升船机船厢门锁定机构 ; 液压系统内泄漏故障 ; 内泄漏建模仿真 ; 卷积神经网络 ; 故障诊断

    

中文摘要:

升船机船厢门中的重要安全设备船厢门锁定机构液压系统,能够固定住船厢门,使船厢在运行时更加安全。由于其恶劣的工作环境以及高工作强度,在长时间工作中会发生内泄漏故障。该故障隐蔽性强,巡检时,相关人员容易忽略且难以对故障进行诊断,环境中还含有噪音信号,使用常规方法的诊断准确率将会偏低,因此需要开展这方面的研究。

本文针对船厢门锁定机构液压系统的内泄漏故障问题,建立船厢门锁定机构液压系统的AMESim仿真模型并仿真其正常工作状态,研究锁定油缸运行参数的变化规律,验证仿真模型的准确性,然后建立内泄漏故障的AMESim仿真模型,通过仿真研究内泄漏故障对锁定油缸运行参数的影响,得到内泄漏故障仿真的样本参数,研究基于卷积神经网络的内泄漏故障诊断方法,改进基于卷积神经网络的故障诊断方法,增强其适应噪音环境的能力,研究改进后故障诊断方法的抗噪性。本文的主要研究成果如下:

(1)建立并验证船厢门锁定机构液压系统的AMESim仿真模型,研究锁定油缸运行参数的变化规律。研究表明:船厢门锁定机构解锁行程所需时间大于其锁定行程所需时间,在锁定行程和解锁行程中,无杆腔压力始终小于有杆腔压力,无杆腔流量一直大于有杆腔流量;船厢门锁定机构液压系统的AMESim仿真模型具有一定的准确性。

(2)建立液压系统内泄漏仿真模型,研究内泄漏故障对锁定油缸运行参数的影响。研究表明:内泄漏间隙量越大,内泄漏故障越严重,在锁定行程和解锁行程中,间隙量越大对锁定油缸运行参数的影响越大,其中对无杆腔压力的影响最显著,无杆腔压力与间隙量呈三次方反相关关系,可以选取无杆腔压力故障数据作为后续故障诊断的故障样本数据。

(3)研究基于卷积神经网络的故障诊断方法,建立基于卷积神经网络的内泄漏故障诊断模型。研究表明:针对船厢门锁定机构液压系统的内泄漏故障,基于卷积神经网络的内泄漏故障诊断模型具有不错的诊断效果,其中对锁定油缸内泄漏故障的诊断效果最好;学习率越小批处理数目越大,诊断准确率越高;基于卷积神经网络的故障诊断方法在诊断效果上要优于一些基于机器学习算法的故障诊断方法。

(4)改进基于卷积神经网络的故障诊断方法,研究改进后故障诊断模型的抗噪性。研究表明:改进后的故障诊断模型能够很好的适应噪音环境;在原卷积神经网络中添加BN、dropout层可以提高模型抗噪能力,使用mini-batch值更小的训练方法训练改进后故障诊断模型也能提高模型抗噪能力;基于改进卷积神经网络的故障诊断方法在抗噪性上要优于之前使用的故障诊断方法和一些基于机器学习算法的故障诊断方法。

参考文献:

[1]郑卫力. 三峡升船机通航运行实践与思考[J]. 水运工程, 2022(09): 112-115, 121.

[2]周文希. 三峡升船机主减速器振动故障原因分析与识别方法研究[D]. 武汉理工大学, 2020.

[3]鄢玲祉, 李飞. 影响三峡升船机锁定机构性能的原因分析与应对措施[J]. 科技资讯, 2019, 17(35): 74-75.

[4]黄晓欢, 邹斌斌. 三峡升船机液压系统渗漏油原因及处理措施[J]. 现代工业经济和信息化, 2018, 8(17): 130-131, 133.

[5]杨蓉. 三峡升船机试运行设备故障分析及应急抢修处理[J]. 人民长江, 2020, 51(S2): 365-367, 400.

[6]Du T, Zhang H, Wang L. Analogue circuit fault diagnosis based on convolution neural network[J]. Electronics Letters, 2019, 55(24): 1277-1279.

[7]葛志伟. 液压系统建模和仿真技术的现状与发展[J]. 液压气动与密封, 2022, 42(06): 1-6.

[8]刘景彬. 柱塞式静液压变矩器研究[D]. 太原科技大学, 2017.

[9]Park C G, Yoo S, Ahn H, et al. A coupled hydraulic and mechanical system simulation for hydraulic excavators[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(4): 527-549.

[10]魏苏杰, 王欣, 徐志升, 等. 基于AMESim举高消防车调平液压系统故障仿真[J]. 起重运输机械, 2021(08): 70-75.

[11]周奇阳, 李志勇, 周为民, 等. 轧机液压控制系统故障仿真研究[J]. 冶金设备, 2022(02): 33-37.

[12]张学飞, 徐亚栋, 羊柳. 某火炮弹协调器液压系统的故障仿真[J]. 弹道学报, 2021, 33(01): 29-34.

[13]谢沅辰, 麦云飞, 徐杭东. 基于AMEsim飞机襟翼液压系统故障分析与仿真[J]. 农业装备与车辆工程, 2020, 58(02): 141-145.

[14]Wei C M, Lian J Y, Li J J. The modeling analysis and dynamics simulation of load-sensing hydraulic systems[C]. Advanced Materials Research. Trans Tech Publications Ltd, 2011, 317: 307-313.

[15]Guo W G, Han W. Modeling and faults simulation of aircraft landing gear system[C]. Applied Mechanics and Materials. Trans Tech Publications Ltd, 2013, 333: 2021-2024.

[16]Chen P, Li X, Tang Z. Simulation analysis of steering gear hydraulic system fault mechanism based on AMESim[C]. 2019 5th International Conference on Transportation Information and Safety (ICTIS). IEEE, 2019: 1496-1499.

[17]Yang J B, Yang Q H, Liu G H. Fault simulation research of hydraulic SOV based on AMESim[C]. Applied Mechanics and Materials. Trans Tech Publications Ltd, 2011, 44: 666-669.

[18]Zhou W. Simulation of hydraulic system faults for marine machinery based on AMESim[J]. Journal of Coastal Research, 2019, 94(SI): 357-361.

[19]周洋. 盾构机液压推进系统故障诊断技术研究[D]. 华北水利水电大学, 2018.

[20]张轩, 张旭, 黄亦翔, 等. 基于时间特征分割和降维谱聚类的液压系统内泄漏故障诊断[J]. 液压与气动, 2021, 45(06): 14-19.

[21]刘若君, 张幼振, 姚克. 基于T-S模糊故障树的煤矿坑道钻机液压动力系统故障诊断研究[J]. 煤田地质与勘探, 2022, 50(12): 194-202.

[22]张庆男, 任玉清, 黄应邦, 等. 基于BP人工神经网络的渔船舵机液压系统故障模拟及诊断[J]. 船舶工程, 2022, 44(12): 82-86, 91.

[23]冯蕴雯, 潘维煌, 路成, 等. 基于逻辑图的国产民机液压系统故障诊断与定位[J]. 西北工业大学学报, 2022, 40(04): 732-738.

[24]王莹莹, 陈宏举, 杨旭光, 等. 基于决策树的水下控制模块液压系统故障诊断方法[J]. 船舶工程, 2022, 44(02): 154-164.

[25]陈敏捷, 羊荣金 .液压支架液压系统故障仿真与诊断技术研究[J]. 液压与气动, 2021(01): 128-132.

[26]张鹏. 采用声发射技术的液压缸内泄漏智能故障诊断[D]. 武汉科技大学, 2022.

[27]Yılmaz Ö, Aksoy M, Kesilmiş Z. Investigation of the relationship between vibration signals due to oil impurity and cavitation bubbles in hydraulic pumps[J]. Electronics, 2022, 11(10): 1549-1551.

[28]Mallak A, Fathi M. Sensor and component fault detection and diagnosis for hydraulic machinery integrating LSTM autoencoder detector and diagnostic classifiers[J]. Sensors, 2021, 21(2): 433-435.

[29]Gareev A, Protsenko V, Stadnik D, et al. Improved fault diagnosis in hydraulic systems with gated convolutional autoencoder and partially simulated data[J]. Sensors, 2021, 21(13): 4410-4413.

[30]Vasquez S, Kinnaert M, Pintelon R. Active fault diagnosis on a hydraulic pitch system based on frequency-domain identification[J]. IEEE Transactions on Control Systems Technology, 2017, 27(2): 663-678.

[31]Ortiz J F, Borrás C, Sepulveda D. Fault detection and diagnosis for a nonlinear hydraulic actuator[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 575(1): 12-14.

[32]Li G P, Zhang Q W, Xiao M. Fault diagnosis research of hydraulic excavator based on fault tree and fuzzy neural network[C]. Applied Mechanics and Materials. Trans Tech Publications Ltd, 2013, 303: 1350-1356.

[33]Zuo G L, Niu F L, Cheng Y, et al. Study on the fault diagnosis of gear pump based on RBF neural network[C]. Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 556: 2957-2961.

[34]张金玲, 韩江. 液压系统故障诊断技术的研究现状与发展趋势研究[J]. 无线互联科技, 2019, 16(17): 134-135.

[35]赵浩洋, 黄连忠, 马冉祺, 等. 风翼液压系统故障诊断方法综述[J]. 机床与液压, 2023, 51(02): 193-204.

[36]嵇光国, 吕淑华. 液压系统故障诊断与排除[M]. 海洋出版社, 1992.

[37]罗建明. 液压系统故障产生原因分析方法[J]. 中国设备管理, 2001.

[38]黄志坚. 电-液系统故障的逻辑链分析法[J]. 机床与液压, 1994(02): 116-117, 120.

[39]孙健, 李洪儒, 王卫国, 等. 一种基于WMUWD的液压泵振动信号预处理方法[J]. 振动与冲击, 2015, 34(21): 93-99.

[40]李瑞. 基于小波分析的工程机械液压缸故障特征提取研究[D]. 武汉理工大学, 2012.

[41]Jing B D, Lu S, Yang L Z, et al. Research of hydraulic jack leakage diagnosis emulation base on wavelet/AMESim[C]. Key Engineering Materials. Trans Tech Publications Ltd, 2009, 392: 103-108.

[42]Goharrizi A Y, Sepehri N. A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators[J]. IEEE transactions on industrial electronics, 2009, 57(5): 1755-1763.

[43]Zhao X, Zhang S, Zhou C, et al. Experimental study of hydraulic cylinder leakage and fault feature extraction based on wavelet packet analysis[J]. Computers & Fluids, 2015, 106: 33-40.

[44]Chang Y, Wang Y, Tao L, et al. Fault diagnosis of a mine hoist using PCA and SVM techniques[J]. Journal of China University of Mining and Technology, 2008, 18(3): 327-331.

[45]Shanbhag V V, Meyer T J J, Caspers L W, et al. Failure monitoring and predictive maintenance of hydraulic cylinder-state-of-the-art review[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 3087-3103.

[46]廖辉, 乔东凯. 基于LS-SVM液压缸泄漏故障诊断方法的研究[J]. 机床与液压, 2017, 45(15): 184-187.

[47]Zhang P, Chen X. Internal leakage diagnosis of a hydraulic cylinder based on optimization DBN using the CEEMDAN technique[J]. Shock and Vibration, 2021, 236: 1-10.

[48]Shi C, Ren Y, Tang H, et al. A fault diagnosis method for an electro-hydraulic directional valve based on intrinsic mode functions and weighted densely connected convolutional networks[J]. Measurement Science and Technology, 2021, 32(8): 84-89.

[49]Zhu Y, Li G, Tang S, et al. Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN[J]. Applied Acoustics, 2022, 192: 108-114.

[50]Qiu Z, Min R, Wang D, et al. Energy features fusion based hydraulic cylinder seal wear and internal leakage fault diagnosis method[J]. Measurement, 2022, 195: 111-119.

[51]Shen K, Zhao D. Fault diagnosis for aircraft hydraulic systems via one-dimensional multichannel convolution neural network[C]. Actuators. MDPI, 2022, 11(7): 182-184.

[52]Tang S, Zhu Y, Yuan S. Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J]. Reliability Engineering & System Safety, 2022, 224: 108-115.

[53]Zhou X, Lei X. Fault Diagnosis method of the construction machinery hydraulic system based on artificial intelligence dynamic monitoring[J]. Mobile Information Systems, 2021, 76: 1-10.

[54]Li Y, Feng X, Yang L. Intelligent fault diagnosis methodology of hydraulic traveling system for construction machinery[C]. IEEE 10th International Conference on Industrial Informatics. IEEE, 2012: 139-144.

[55]Fawwaz D Z, Chung S H. Real-time and robust hydraulic system fault detection via edge computing[J]. Applied Sciences, 2020, 10(17): 59-63.

[56]宋旭彤, 刘卓元, 金毅, 等. 基于CNN和预处理机制的球磨机故障诊断方法[J]. 传感器与微系统, 2022, 41(11): 134-137, 142.

[57]Zhang Q, Xiong W, Wang H, et al. Research on pressure characteristics of a vehicle shift hydraulic system based on AMESim[C], 2017 36th Chinese Control Conference (CCC). IEEE, 2017: 10486-10489.

[58]Liu Y, Wang Q, Li X, et al. Internal leakage analysis and experiment in hydraulic control system of steam turbine inlet valve[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235(2): 571-581.

[59]薛旭飞, 谷立臣, 程冬宏, 等. 液压缸密封圈磨损量与内泄漏量的映射关系研究[J]. 液压与气动, 2020(12): 30-36.

[60]何毓明, 彭利坤, 宋飞. 基于AMESim的液压滑阀中位内泄漏仿真研究[J].液压与气动, 2018(05): 74-80.

[61]Zhu Q, Zu X. Fully Convolutional neural network structure and its loss function for image classification[J]. IEEE Access, 2022, 10: 35541-35549.

[62]Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-377.

[63]于升飞. 三峡升船机防撞缓冲液压系统内泄漏故障仿真与诊断方法研究[D]. 武汉理工大学, 2020.

[64]兰浩鑫. 基于反向传播的深度脉冲神经网络训练算法研究[D]. 广东工业大学, 2022.

[65]韩煜, 张义民, 张凯, 等. Adam优化CNN的滚动轴承多故障耦合诊断方法研究[J]. 机械设计与制造, 2022(08): 169-172.

[66]Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. International conference on machine learning. PMLR, 2015: 448-456.

[67]Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.

[68]Lin T, Kong L, Stich S, et al. Extrapolation for large-batch training in deep learning[C]. International Conference on Machine Learning. PMLR, 2020: 6094-6104.

中图分类号:

 U642    

条码号:

 002000073911    

馆藏号:

 YD10002026    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式