- 无标题文档
查看论文信息

中文题名:

 

无人航行器振动噪声预报及声隐身性能提升研究

    

姓名:

 魏建红    

学号:

 1049732003913    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080700    

学科名称:

 工学 - 动力工程及工程热物理    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 能源与动力工程学院    

专业:

 动力工程    

研究方向:

 振动与噪声控制    

第一导师姓名:

 向阳    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-03-23    

答辩日期:

 2023-05-18    

中文关键词:

 

无人航行器 ; 水下声辐射 ; 减振降噪技术 ; 声学黑洞 ; 圆柱壳结构

    

中文摘要:

无人航行器是现代海战中重要的武器装备,其高性能不可或缺,其中声隐身性能是其关键技术指标之一。随着水声探测技术的发展,对其声隐身性能的要求越来越高。无人航行器的噪声主要来源有水动力噪声、机械噪声和螺旋桨噪声,对无人航行器振动噪声特性的研究是设计减振降噪方案的基础。文中以SUBOFF无人航行器模型为研究对象,对无人航行器的水动力噪声和机械振动噪声进行了计算,分析其声振特性,并针对结构的机械振动噪声进行了减振降噪方案研究,研究工作主要内容包括:

1)建立SUBOFF结构模型和流体域模型,对其在水中航行时的流场进行计算,分析其阻力并与已知的试验结果对比,验证了计算模型的有效性,继而对其在水中航行时产生的水动力噪声进行计算和分析。

2)建立SUBOFF水下航行器的有限元模型,对其干模态和湿模态进行计算分析,采用有限元法和边界元法计算结构在不同激励下的声振响应,并对其辐射声压指向性进行分析。

3)对水下航行器结构的机械振动进行减振降噪方案研究,分析了推进电机、推力轴承等基座结构面板厚度对结构声振特性的影响,并研究了在基座上设置阻振质量的减振降噪效果,另外,探讨了在推进电机和推力轴承基座上布置动力吸振器对结构声振响应的影响。

4)在圆柱壳内部设计具有声学黑洞(acoustic black hole,ABH)性质的周期性结构,探讨不同周期数和圆柱壳内径对该结构振动特性的影响。然后在该结构外侧布置周期性的由阻尼层和质量层构成的振子,并分析了振子质量层不同材料和不同几何尺寸对结构振动特性的影响。最后将声学黑洞应用到水下航行器中部舱段上并在外侧附加振子,分析其对振动传递特性的影响。

参考文献:

[1]李永坤. 全系统水下航行体流固耦合计算及水动力噪声计算[D].大连:大连理工大学,2020.

[2]Lighthill M J. On sound generated aerodynamically. Part I. General theory[J]. Proc. R. Soc. London Ser. A, 1952, 211:564-587.

[3]Ffowcs Williams J E, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Proc. Roy. Soc.London, Ser. A, 1969, 264:321-342.

[4]Chaillat S, B Cotté, Mercier J F, et al. Efficient evaluation of three-dimensional Helmholtz Green's functions tailored to arbitrary rigid geometries for flow noise simulations[J]. Journal of Computational Physics, 2022, 452:110915-.

[5]Alin N, Chapuis M, Fureby C, et al. A numerical study of submarine propeller-hull interactions[C]. Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, USA, 13-17 September, 2010.

[6]孟堃宇. 基于大涡模拟的潜艇脉动压力与流噪声性能数值计算[D].上海:上海交通大学,2011.

[7]顾梦凡,宋保维.基于大涡模拟的方柱绕流噪声特性研究[J].西北工业大学学报,2020,38(3):465-470.

[8]Böhning P, Baumann R , Michel U , et al. Numerical study of wake vortex noise using LES and an acoustic analogy method[C]// Euromech Colloquium 467: Turbulent Flow & Noise Generation. DLR, 2005.

[9]Song M, Song W, Wang Y, et al. Noise prediction research of a scaled turboprop aircraft[J]. Journal of Northwestern Polytechnical University, 2022, 39(6):1169-1178.

[10]Chen J, Zhu M, Zhang R, et al. Numerical simulation and flow noise computation during transient launching process of torpedo in deep-sea simulator[J]. Applied Ocean Research, 2022(121-):121.

[11]张楠,李亚,黄苗苗,等.艇桨耦合状态螺旋桨水动力与噪声数值预报方法研究[J].船舶力学,2021,25(11):1439-1451.

[12]Kim S E, Rhee B, Shan H. URANS simulation of propeller-hull interactions on an underwater body in maneuver[C]. Proceedings of the 30th Symposium on Naval Hydrodynamics, Hobart, Tasmania, Australia, 2-7 November, 2014

[13]杜炳鑫,张文平,明平剑.基于流声分解法的串列和并列双圆柱绕流噪声数值模拟(英文)[J].船舶力学,2019,23(9):1122-1138.

[14]Meng Haiyang, Xu Zixiang, Yang Jing, et al. Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network[J]. 中国物理B, 2022, 31(6):64305-064305.

[15]Liu H L, Huang T T. Summary of DARPA Suboff Experimental Program Data CRDK- NSWC/HD-1298-11[R]. Naval Surface Warfare Center, Carderock Divisi-on,1998.

[16]李孟捷,江国金,熊传志.水下航行体两种降噪尾附体形式的应用研究[J].中国舰船研究,2013,8(1):26-31.

[17]Takahashi K, Prasanta K. Numerical Study on the Hydrodynamic Performance of the DARPA Suboff Submarine for Steady Translation[A]. ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering[C],2020.

[18]Zden Y A, Münir Cansn Zden, Demir E, et al. Experimental and numerical investigation of DARPA suboff submarine propelled with INSEAN E1619 propeller for self-propulsion[J]. Journal of Ship Research, 2019, 63(4): 235-250.

[19]周志洪,林永水,陈威,等.水下圆柱壳结构流噪声仿真及降噪技术研究[J].噪声与振动控制,2022,42(5):90-95,122.

[20]邓云,傅何琪,广超越,等.不同外形声呐的水动力及流噪声数值模拟分析[J].中国舰船研究,2021,16(6):92-98.

[21]封纪港. 舰艇柔性舵流体辐射噪声特性分析[D].哈尔滨:哈尔滨工业大学,2021.

[22]李学智. 水下典型结构体流噪声数值仿真分析[D].哈尔滨:哈尔滨工程大学,2021.

[23]Li Fang, Huang Qiaogao, Pan Guang, et al. Numerical study on hydrodynamic performance and flow noise of a hydrofoil with wavy leading-edge.[J]. AIP Advances,2021, 11(9):1-14.

[24]Leissa A W, Nordgren R P. Vibration of shells[J]. Journal of Applied Mechanics, 1993, 41(2):544.

[25]Zhang W, Fang Z, Yang X D, et al. A series solution for free vibration of moderately thick cylindrical shell with general boundary conditions[J]. Engineering Structures, 2018, 165:422-440.

[26]聂睿,李天匀,朱翔,等.基于能量变分原理的梁-圆柱壳耦合系统振动特性分析[J].振动与冲击,2022,41(7):1-10.

[27]霍慧,陈国海,王文培,等.平稳/非平稳激励下中厚圆柱壳随机振动响应的基准解[J].力学学报,2022,54(3):762-776.

[28]Yang Y, Pan G, Yin S, et al. Vibration transmission path analysis of underwater vehicle power plant based on TPA power flow:[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2022, 236(1):150-159.

[29]杨成春.水下轴系-壳体耦合系统振动特性及结构优化分析[D].上海:上海交通大学,2014.

[30]靳玉林,刘治汶,陈予恕.航空发动机双转子系统叶片-机匣碰摩故障模拟[J].航空学报,2022,43(12):498-511.

[31]周文锋,左言言,周帅利.基于ANSYS的多轴汽车振动响应分析[J].噪声与振动控制,2013,33(6):106-109,128.

[32]Yao H, Zhang H, Liu H, et al. Numerical study of flow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method[J]. Engineering Analysis with Boundary Elements, 2017, 77:1-9.

[33]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.

[34]沈重,陈忠明.基于有限元-统计能量分析混合法座舱噪声特性研究[J].噪声与振动控制,2022,42(5):200-203.

[35]Vergote K, Genechten B V, Vandepitte D, et al. On the analysis of vibro-acoustic systems in the mid-frequency range using a hybrid deterministic-statistical approach[J]. Computers & Structures, 2011, 89(11/12):868-877.

[36]韩飞,王敏庆. AUV动力舱段简化建模及振动传递特性研究[J].机械科学与技术,2017,36(4):616-620.

[37]张凯,尹韶平,曹小娟,等.鱼雷动力及推进系统简化建模与振动分析[J].水下无人系统学报,2019,27(2):217-224.

[38]钱超,陈志敏,李海峰.质量分布对水下结构振动声辐射影响研究[J].海军工程大学学报,2017,29(3):6-10.

[39]胡世猛,王斌,汤渭霖,等.舱壁对圆柱壳振动声辐射影响研究[J].船舶力学,2013,17(7):819-829.

[40]Ji, G, Zhou, Q.-D, Tan, L. Coupling characteristic and mechanism of the submarine thrust and hull system excited by the propeller thrust force(Article)[J]. Zhendong Gongcheng Xuebao,2019,32(2):264-271.

[41]Merz S, Kinns R, Kessissoglou N. Structural and acoustic responses of a submarine hull due to propeller forces[J]. Journal of Sound & Vibration, 2009, 325(1/2):266-286.

[42]Yucel A, Arpaci A. Free and forced vibration analyses of ship structures using the finite element method[J].Journal of Marine Science and Technology, 2013, 18(3):324-338.

[43]杨忠超,楼京俊,孙炯,等.水下航行器推进器-轴系-壳体系统声振特性研究[J].舰船科学技术,2017,39(23):30-35.

[44]阮晓亮.多约束状态下UUV推进轴系模态分析[J].水雷战与舰船防护,2014,22(2):51-55.

[45]王苏,阮晓亮.基于有限元法的高速舰船轴系回旋振动计算[J].水雷战与舰船防护,2017,25(3):75-78.

[46]廖旭晖.多点耦合机械系统振动传递路径分析及响应预测[D].南京:南京航空航天大学,2020.

[47]Wei, Cheng, Yingying, et al. Tikhonov regularization-based operational transfer path analysis[J]. Mechanical Systems and Signal Processing, 2016, 75:494-514.

[48]Wang Z, Zhu P. A system response prediction approach based on global transmissibilities and its relation with transfer path analysis methods[J]. Applied Acoustics, 2017, 123:29-46.

[49]Inoue, Akira. Exactness of alternative force estimation methods and applications to power flow and transfer path analysis[J]. Journal of the Acoustical Society of America, 2017, 141(3):255-261.

[50]钟奎奎,李江涛,吴文伟,等.基于动刚度功率流法的组合板结构振动特性分析[J].船舶力学,2019,23(11):1360-1368.

[51]刘金林,赖国军,蔡耀全,等.基于有限元功率流的螺旋桨-轴系-船体耦合振动特性研究[J].中国造船,2017,58(2):68-77.

[52]Shang Z, Hu F, Zeng F, et al. Research of transfer path analysis based on contribution factor of sound quality[J]. Applied Acoustics, 2021, 173:107693.

[53]刘甄真,江国和,孙久航,陈鸽,袁双双.X-BOW型极地邮轮激励源对水下声辐射贡献率研究[J].中国造船,2020,61(4):150-163.

[54]金广文,章林柯,缪旭弘,等.水下加肋双层圆柱壳体振动传递特性分析[J].振动与冲击,2011,30(5):218-221.

[55]段勇,郭君,周凌波.水下航行器尾段振动激励源特性试验研究[J].水下无人系统学报,2017,25(5):332-338.

[56]周书敏,唐旭东,谢昊.船舶减振降噪措施与方法[J].船舶工程,2022,44(8):12-18.

[57]Xiao Heye, Xu Chizhen, Wang Ruobing, et al. A nonlinear model and parameter identification method for rubber isolators under shock excitation in underwater vehicles[J]. Journal of Marine Science and Engineering,2021,9(11):1282.

[58]Liu Niuniu, Li Chenyang, Yin Caiyu, et al. Application of a dynamic antiresonant vibration isolator to minimize the vibration transmission in underwater vehicles[J]. Journal of Vibration and Control,2018,24(17):3819-3829.

[59]肖程诗,吴绍维,王俊,等.大型船用柴油发电机组浮筏隔振系统设计与优化[J].噪声与振动控制,2022,42(3):25-29,35.

[60]陈纠,蔡龙奇,刘佳,等.泵类设备主动浮筏隔振技术研究[J].核动力工程,2019,40(2):49-52.

[61]Eduardo Barredo et al. Optimal design for high-performance passive dynamic vibration absorbers under random vibration[J]. Engineering Structures, 2019, 195:469-489.

[62]Mori Hiroki, Abe Tomohiro, Sowa Nobuyuki, et al. Analytical method for suboptimal design of dynamic absorber for parametrically excited system[J]. Journal of Sound and Vibration,2023,117557.

[63]Wang Qiang, Zhou Jiaxi, Wang Kai, et al. Dual-function quasi-zero-stiffness dynamic vibration absorber: Low-frequency vibration mitigation and energy harvesting[J]. Applied Mathematical Modelling,2023,116:636-654.

[64]杨晓彤,申永军,王俊锋.一种含放大机构、惯容和接地刚度的动力吸振器的参数优化[J].振动与冲击,2022,41(21):308-315.

[65]杨庚,王帅,郑昌军,等.转子多重干摩擦阻尼动力吸振器及其减振特性[J/OL].航空动力学报:2023(3):1-10.

[66]李浩然,向阳,李飞,等.船舶双层底结构吸振阻振方案设计[J].船海工程,2021,50(6):60-65,71.

[67]李永胜,张彤彤,王纬波.海洋平台甲板及舱壁结构减隔振特性研究[J].噪声与振动控制,2021,41(3):151-157.

[68]蒋圣鹏,黄子祥,巫頔,等.螺旋桨激励下船尾结构振动控制试验研究[J].中国舰船研究,2021,16(3):157-163.

[69]周强,王青山,钟锐.阻振结构在甲板结构低频隔振中的应用研究[J].中国舰船研究,2020,15(5):176-182.

[70]杨德庆,杨康,王博涵.刚度-质量-阻尼综合优化的船舶减振统一阻抗模型法[J].振动工程学报,2020,33(3):485-493.

[71]李应刚,周雷,朱凌,等.周期性阻振质量船体板弯曲振动带隙研究[J].船舶力学,2019,23(11):1369-1375.

[72]Mironov M A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J]. Soviet Physics-Acoustics, 1988, 34(3):318-319.

[73]Krylov V V, Tilman F J B S. Acoustic‘black holes’for flexural waves as effective vibration dampers[J]. Journal of Sound and Vibration, 2004, 274(3/4/5):605-619.

[74]Krylov V V, Winward R. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates[J]. Journal of Sound and Vibration, 2007, 300(1/2):43-49.

[75]邓杰,郑玲,左益芳,等. 声学黑洞梁的振动能量分布探讨[J]. 噪声与振动控制,2018,38(S1):66-70.

[76]Du X, Huang D, Fu Q, et al. Effects of acoustic black hole parameters and damping Layer on sound insulation performance of ABH circular plate[J]. Applied Sciences, 2019, 9(24):5366.

[77]Oliver U, Christopher B, Peter M H. Numerical and experimental study of sound power reduction performance of acoustic black holes in rectangular plates[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2015, 8(3):956-963.

[78]Zhao L. Low-frequency vibration reduction using a sandwich plate with periodically embedded acoustic black holes[J]. Journal of Sound and Vibration, 2019,441:165-171.

[79]Mironov M A, Pislvakov V V. One-dimensional acoustic waves in retarding structures with propagation velocity tending to zero[J]. Acoustical Physics, 2002, 48(3):347-352.

[80]El-ouahabi A A, Krylov V V, O'boy D J. Investigation of the acoustic black hole termination for sound waves propagating in cylindrical waveguides[C]. International Conference 'InterNoise 2015'.2015.

[81]Deng J, Guasch O, Maxit L, et al. Vibration of cylindrical shells with embedded annular acoustic black holes using the Rayleigh-Ritz method with Gaussian basis functions[J]. Mechanical Systems and Signal Processing, 2021,150:107225.

[82]Peng Wang, Zhang Jie, Shi Meng, et al. Low-frequency sound insulation optimisation design of membrane-type acoustic metamaterials based on Kriging surrogate model[J]. Materials & Design,2023,225.

[83]Zeng Qinglei, Gao Shenlian, Lai Yun, et al. Improving the directionality of low-frequency acoustic radiation by a finite array of quadrupolar sources with acoustic metamaterials[J]. Crystals,2023,13,101.

[84]Rostami R, Rahaghi M I, Mohammadimehr M . Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method[J]. Journal of Sandwich Structures and Materials, 2021, 23(1):132-173.

[85]李栋梁,谌勇,张志谊,等.推力轴承油膜刚度对轴系-艇体结构耦合振动的影响研究[J].噪声与振动控制,2011,31(6):81-85.

[86]王优强,李鸿琦,佟景伟.水润滑橡胶轴承[J].轴承.2002, 10:4l-43.

[87]李敬,万志威,李天匀,等.周期声学黑洞结构弯曲波带隙与振动特性[J].噪声与振动控制,2021,41(2):21-27.

[88]张义民. 机械振动.第二版[M]. 北京:清华大学出版社,2019.

[89]温华兵. 船舶振动噪声预报与结构声学设计[M]. 北京:国防工业出版社,2015.

[90]任玉新,陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社,2006.

中图分类号:

 U674.941    

条码号:

 002000074335    

馆藏号:

 YD10002471    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式