- 无标题文档
查看论文信息

中文题名:

 

水热合成四方相钛酸钡粉体及其形貌调控与分散性研究

    

姓名:

 白罗    

学号:

 1049721900555    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 储能材料    

第一导师姓名:

 李美娟    

第一导师院系:

 化学化工与生命科学学院    

第二导师姓名:

 罗国强    

完成日期:

 2022-06-24    

答辩日期:

 2022-06-08    

中文关键词:

 

钛酸钡 ; 两步水热法 ; 组合分散剂 ; 组合分散机理

    

中文摘要:

随着多层陶瓷电容器(MLCC)器件的高容量化、轻量化、小型化趋势,市场对钛酸钡(BT)粉体要求更高。钛酸钡粉体的轴率(c/a)、分散性(或称分散度pdi)、粒径、形貌等质量指标对MLCC的烧结性能和介电性能具有重要的影响;水热法合成BT粉体具有纯度高、不需要二次球磨、粒径小等优点,但大多数水热法合成出的BT粉体是立方相和四方相的混合相(c/a值在1.0070~1.0090之间),同时纳米粉体的团聚造成尺寸分布不均匀,这些缺陷制约了水热合成BT粉体的应用发展。因此,本文以Ba(OH)2•8 H2O-TiO2-NH4OH体系为基础原料,先在两步水热法中探究反应温度、反应时间、钡钛比、钛源种类、二氧化钛尺寸等条件对合成粉体高轴率的影响,比较了其合成颗粒的特征,初步优化出合成高轴率BT粉体的最佳合成条件;再探究并比较单一分散剂聚乙烯基吡络烷酮(PVP)、十六烷基三甲基溴化铵(CTAB),组合分散剂(PVP/CTAB)对BT粉体的分散性、粒径、形貌的影响;最后我们提出了一种改善粉体尺寸、分散性的组合优化机制。其研究结果如下:

1. 在两步水热法中,随着温度从200 ℃升高到240 ℃,时间从12 h增加到36 h,粉体颗粒逐渐由空洞结构转化为实心结构、形貌规整,尺寸增加,轴率(c/a)增加;钡钛比增加有利于竞争成核,导致尺寸减小;钡浓度增加,钡离子扩散增加,钡空位减少,有利于合成四方相BT粉体,c/a增加;以大尺寸锐钛矿相TiO2为钛源可以获得较高的轴率,小尺寸TiO2的结晶度较低不利于合成四方相BT;金红石相TiO2抑制粉体四方相的合成;当以偏钛酸和钛酸四丁酯为钛源时,由于钛源本身含有较多的羟基,不利于脱氢过程,得到的BT粉体轴率小。因此,在两步法中,以大尺寸(191/88 nm)、锐钛矿相、TiO2为钛源,Ba(OH)2•8H2O为钡源,醇水比为1:1,钡钛比为4:1,氨水加入量为142 mL/L,第一步反应温度100 ℃、时间10 h,第二步反应温度240 ℃、时间48 h时可以获得c/a为1.0101的BT粉体,非常接近理想轴率1.011。

2. 在合成出高轴率BT粉体后,对比了单一分散剂PVP、CTAB和组合分散剂(PVP/CTAB)对合成BT粉体的轴率、分散性和尺寸的影响,结果表明:缺乏分散剂的情况下,两步水热法合成的钛酸钡还普遍存在分散性差、尺寸较大等缺点;添加单一分散剂后,粉体的分散性得到很大改善,粒度分布曲线由原来的双峰变为单峰,尺寸减小、轴率降低;加入组合分散剂后,pdi值降低更小,分散性更好,轴率、尺寸进一步降低。

3. 通过红外表征、透射测试分析了粉体表面的官能团、包覆层厚度和元素分布,揭示了组合分散剂的分散机理优势:大分子PVP依靠氢键吸附在粉体表面,小分子CTAB依靠静电吸附力包覆粉体实现分散、抑制生长。大分子由于自身缠绕会阻碍氢键形成效率,分散效果不佳。小分子的简单吸附容易在高温环境下被破坏,对粉体的分散和尺寸的控制效果不理想;当小分子与大分子组合使用时,小分子一方面充当“润滑剂”减少大分子自身缠绕,促进大分子PVP形成更多氢键;另一方面,小分子也能局部包覆粉体起到协同作用加强粉末的尺寸和分散性控制效果。

参考文献:

[1] Pithan C, Hennings D, Waser R. Progress in the synthesis of nanocrystall BaTiO3 powders for MLCC [J]. International Journal of Applied Ceramic Technology, 2005, 2(1): 1-14.

[2] Li J, Li F, Xu Z, et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency [J]. Advanced Materials, 2018, 30(32): 1802155.

[3] Hong K, Lee T H, Suh J M, et al. Perspectives and challenges in multilayer ceramics capacitors for next generation electronics [J]. Journal of Materials Chemistry C, 2019, 7(32): 9782-9802.

[4] Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives [J]. Japanese Journal of Applied Physics, 2003, 42(1): 1-15.

[5] Pan M J, Randall C A. A brief introduction to ceramic capacitors [J]. Electrical Insulation Magazine, IEEE, 2010, 26(3):44-50.

[6] Li R J, Wei W X, Hai J L, et al. Preparation and electric-field response of novel tetragonal barium titanate [J]. Cheminform, 2013, 574(39): 212-216.

[7] 张联盟,黄学辉,宋晓岚.材料科学基础:Fundamentals of materials science [M]. 武 汉 理工大学出版社,2008.

[8] Chazono H,Kishi H. Dc-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: Impedance analysis and microstructure [J]. Japanese Journal of Applied Physics, 2001, 40(9B): 5624-5629.

[9] 谢雨洲,彭超群,王小锋,等.流延成型技术的研究进展 [J].中国有色金属学报,2015, 25(7): 1846-1857.

[10] Hwang C S, Lee B T, Kang C S, et al. Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films [J]. Journal of Applied Physics, 1999, 85(1): 287-295.

[11] Hoshina T, Kakemoto H, Tsurumi T, et al. Analysis of composite structures on barium titanate fine particles using synchrotron radiation [J]. Key Engineering Materials, 2006, 301(8): 239-242.

[12] Wada S, Yasuno H, Hoshina T, et al. Preparation of nm-sized barium titanate fine Particles and their powder dielectric properties [J]. Japanese Journal of Applied Physics, 2003, 42(9): 6188-6195.

[13] Ishikawa K, Uemori T. Surface relaxation in ferroelectric perovskites [J]. Physical Review B, 1999, 60(17): 11841-11845.

[14] Hoshina T. Size effect of barium titanate: Fine particles and ceramics [J]. Journal of the Ceramic Society of Japan, 2013, 121(1410): 156-61.

[15] Hoshina T, Takizawa K, Li J, et al. Domain size effect on dielectric properties of barium titanate ceramics [J]. Japanese Journal of Applied Physics, 2008, 47(9): 7607-7611.

[16] Hoshina T, Kigoshi Y, Hatta S, et al. Domain contribution to dielectric properties of fine-grained BaTiO3 ceramics [J]. Japanese Journal of Applied Physics, 2009, 48(9issue2): 09KC01-09KC01-4.

[17] Skorokhod V V. Theory of the physical properties of porous and composite materials and the principles for control of their microstructure in manufacturing processes [J]. Powder Metallurgy and Metal Ceramics, 1995, 34(1): 48-63.

[18] Yen T S, Pask J A. Microstructure and properties of ceramic materials [J]. Acs, 1984, 73(11): 3135-3160.

[19] Ciftci E, Rahaman M N, Shumsky M. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles [J]. Journal of Materials Science, 2001(36): 4875-4882.

[20] Hennings D, Metzmacher C, Schreinemacher B S. Defect chemistry and microstructure of hydrothermal barium titanate [J]. Journal of the American Ceramic Society, 2001, 84(1): 179-182.

[21] Qi L, Lee B I, Badheka P. Low-temperature paraelectric-ferroelectric phase transformation in hydrothermal BaTiO3 particles [J]. Materials Letters, 2005, 59(22): 2794-2798.

[22] Zhu X, Wang J, Zhang Z, et al. Atomic-scale characterization of barium titanate powders formed by the hydrothermal process [J]. Journal of the American Ceramic Society, 2010, 91(3): 1002-1008.

[23] Begg B D, Vance E R, Nowotny J. Effect of particle size on the room-temperature crystal structure of barium titanat [J]. Journal of the American Ceramic Society, 2010, 77(12): 3186-3192.

[24] Curecheriu L, Buscaglia M T, Buscaglia V, et al. Grain size effect on the nonlinear dielectric properties of barium titanate ceramics [J]. Applied Physics Letters, 2010, 97(24): 242909 .1- 242909.3.

[25] Fujii I, Ugorek M, Trolier-Mckinstry S. Grain size effect on the dielectric nonlinearity of BaTiO3 ceramics [J]. Journal of Applied Physics, 2010, 107(10): 104116.1-104116.6.

[26] Fujii I, Trolier-Mckinstry S, Nies C. Effect of grain size on dielectric nonlinearity in model BaTiO3-based multilayer ceramic capacitors [J]. International Journal of Applied Ceramic Technology, 2011, 94(1): p.194-199.

[27] Stancu A, Ricinschi D, Mitoseriu L, et al. First-order reversal curves diagrams for the characterization of ferroelectric switching [J]. Applied Physics Letters, 2003, 83(18): 3767-3769.

[28] Yoon S H, Kim S J, Kim S H, et al. Influence of excess Ba concentration on the dielectric nonlinearity in Mn and V-doped BaTiO3 multi layer ceramic capacitors [J]. Journal of Applied Physics, 2013, 114(224103): 1-9.

[29] Baldock D. Electronic component market review [J]. Electronic Product Design, 2019(MAR.): 22-22.

[30] Komarneni S, Katsuki H. Microwave-hydrothermal synthesis of barium titanate under stirring condition [J]. Ceramics International, 2010, 36(3): 1165-1169.

[31] 邓湘云,李建保,王晓慧,等. MLCC的发展趋势及在军用电子设备中的应用 [J]. 电子元件与材料,2006, 25(5): 1-6.

[32] 黄昌蓉,唐浩,宋子峰,等. MLCC在5G领域的应用及发展趋势 [J]. 电子元件与材 料,2018, 37(9): 1-4.

[33] 王婷.宽温稳定型多壳层BaTiO3基介电陶瓷的制备与性能研究 [D]. 武汉理工大学, 2015. .

[34] Surahman A, Kofanova N, Kuprina Y, et al. Nanosized effects in BaTiO3 [M]. Rostov-on-Don, Russia, Springer International Publishing,2017.

[35] Tsur Y, Dunbar T, Randall C. Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3 [J]. Journal of Electroceramics, 2001, 7(1): 25-34.

[36] Freeman C, Dawson J, Chen H, et al. A new potential model for barium titanate and its implications for rare-earth doping [J]. Journal of Materials Chemistry, 2011, 21(13): 4861-4863.

[37] Lee S, Jr G, Liu Z K, et al. Intrinsic ferroelectric properties of nonstoichiometric perovskite oxide Ba1-xTi1-yO3-x-2y [J]. Journal of Applied Physics, 2009, 105(9):327-332.

[38] Prado L R, Resende N, Silva R S, et al. Influence of the synthesis method on the preparation of barium titanate nanoparticles [J]. Chemical Engineering and Processing Process Intensification, 2016, 103(C): 12-20.

[39] Hennings D F K, Schreinemacher B.S, Schreinemacher H, et al. Solid-state preparation of BaTiO3-based dielectrics, using ultrafine raw materials [J]. Journal of the American Ceramic Society, 2001, 84(12): 2777-2782.

[40] Buscaglia M T, Buscaglia V, Alessio R, et al. Coating of BaCO3 Crystals with TiO2:  Versatile Approach to the Synthesis of BaTiO3 Tetragonal Nanoparticles. Chemistry of Materials, 2007. 19(4): 711-718.

[41] Tokita K, Sato S. Synthesis and characterization of barium titanate nano-powders by the hydrothermal process [J]. Key Engineering Materials, 2006, 301:219-222.

[42] Li M, Gu L, Li T, et al. TiO2-seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy-storage application [J]. Crystals, 2020, 10(3): 202.

[43] Pinceloup P, Courtois C, Vicens J, et al. Evidence of a dissolution precipitation mechanism in hydrothermal synthesis of barium titanate powders [J]. Journal of the European Ceramic Society, 1999, 19(6): 973-977.

[44] Jooho M, Jeffrey A K, Henrik K, et al. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts [J]. Journal of Materials Research, 1999, 14(2): 425-435.

[45] Buscaglia M T, Buscaglia V, Alessio R, et al. Coating of BaCO3 Crystals with TiO2:  Versatile Approach to the Synthesis of BaTiO3 Tetragonal Nanoparticles. Chemistry of Materials, 2007. 19(4): 711-718.

[46] Buscaglia M T, Bassoli M, Buscaglia V, et al. Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2 [J]. Journal of the American Ceramic Society, 2010, 88(9): 2374-2379.

[47] Ando C, Yanagawa R, Chazono H. Nuclei-growth optimization for fine-grained BaTiO3 by precision-controlled mechanical pretreatment of starting powder mixtur [J]. Journal of Materials Research, 2004, 19(12): 3592-3599.

[48] Zhang, H, Ouyang, S, Liu H, et al. Kinetics and mechanism of the microwave synthesis of barium titanate [J]. MRS Proc. 1996, (430): 447-451.

[49] Lanculescu A, Brăileanu A, Crişan M, et al. Influence of barium source on the characteristics of sol-precipitated BaTiO3 powders and related ceramics [J]. Journal of Thermal Analysis and Calorimetry, 2007, 88(1): 251-260.

[50] 侯铁翠,李智慧,卢红霞,等. 改进的柠檬酸盐溶胶-凝胶法制备四方相纳米尺寸钛酸 钡粉体. 航空材料学报, 2007. 27(003): 74-76.

[51] 贺刚. 纳米钛酸钡的研究进展[J]. 中国科技信息,2009, 12(12):46-48.

[52] 李恒欣,张粉艳,韩陈,等. 草酸盐沉淀法制备BaTiO3陶瓷及介电性能的研究 [C]. 全国第十一届大环化学暨第三届超分子化学学术讨论会,2002.

[53] 胡芳仁,葛昌纯.钛酸钡陶瓷粉末的低温燃烧合成 [J]. 北京科技大学学报, 2001(04): 346-348.

[54] Hua C Z. Synthetic architecture of interior space for inorganic nanostructures [J]. Journal of Materials Chemistry, 2006, 16(7): 649-662.

[55] 李汶军,纳米晶粒水热制备过程中的粒度与形态调控 [D]. 中国科学院上海硅酸盐研究 所2001.

[56] Hongo K, Kurata S, Jomphoak A, et al. Stabilization mechanism of the tetragonal structure in a hydrothermally synthesized BaTiO3 nanocrystal [J], Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics, 2018, 57(9):5413-5419.

[57] Wu M, Long J, Wang G, et al. Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions [J]. Journal of the American Ceramic Society, 2010, 82(11):3254-3256.

[58] Habib A, Stelzer N, Angerer P, et al. Effect of temperature and time on solvothermal synthesis of tetragonal BaTiO3 [J]. Bulletin of Materials Science, 2011, 34(1):19-23.

[59] Han J M, Joung M R, Kim J S, et al. Hydrothermal synthesis of BaTiO3 nanopowders using TiO2 Nanoparticles [J]. Journal of the American Ceramic Society, 2013, 97(2):346-349.

[60] Moon S, Lee H W, Choi C H , et al. Influence of ammonia on properties of nanocrystalline barium titanate particles prepared by a hydrothermal method [J]. Journal of the American Ceramic Society, 2012, 95(7):2248-2253.

[61] 李军,醇—水热合成四方相钛酸钡粉体 [D]. 沈阳工业大学,2013.

[62] 李婷.水热法合成钛酸钡粉体的研究 [D]. 华东理工大学,2016.

[63] Joung M R , Kim J S, Song M E, et al. Synthesis of highly tetragonal BaTiO3 nanopowders by a two-step alkoxide-hydroxide route [J]. Journal of Alloys and Compounds, 2011, 509(37): 9089-9092.

[64] Huang Y A, Lu B, Li D D, et al. Control of tetragonality via dehydroxylation of BaTiO3 ultrafine powders [J]. Ceramics International, 2017, 43(18):16462-16466.

[65] Bacsa R, Ravindranathan P, Dougherty J P. Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates [J]. Journal of Materials Research, 1992, 7(2): 423-428.

[66] Venkatachalam V, Vaidhyanathan B, Binner J. Synthesis of nanocrystalline barium titanate: Effect of microwave power on phase evolution [J]. Journal of the European Ceramic Society, 2020, 40(12): 3974-3983.

[67] Teichert J, Heise M, Chang J H, et al. Refinement of the microwave-assisted polyol process for the low-temperature synthesis of intermetallic nanoparticles [J]. European Journal of Inorganic Chemistry, 2017, 2017(42): 4930-4938.

[68] Sun W, Li J, Wen L, et al. Preparation of fine tetragonal barium titanate powder by a microwave-hydrothermal process [J]. Journal of the American Ceramic Society, 2010, 89(1): 118-123.

[69] Nyutu E K, Chen C H, Dutta P K, et al. Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate [J]. The Journal of Physical Chemistry C, 2008, 112(26): 9659-9667.

[70] Maxim F, Ferreira P, Vilarinho P M, et al. Additive-assisted aqueous synthesis of BaTiO3 nanopowders [J]. Crystal Growth and Design, 2010, 10(9): 3996-4004.

[71] 郝顺利,王新,崔银芳,等.纳米粉体制备过程中粒子的团聚及控制方法研究 [J]. 人工 晶体学报,2006, 35(2): 342-346.

[72] 罗遂斌,庄志强,刘勇等.聚丙烯酸对BaTiO3颗粒的分散及机理研究[J]. 陶瓷学报, 2008, 29(4): 334-336.

[73] Moon S, Choi C H, Baek C, et al. The effects of propionic acid on nano-sized BaTiO3 particles synthesized by a hydrothermal method[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(10):8056.

[74] Ma Q, Mimura K I, Kato K. Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process [J]. Journal of Alloys and Compounds, 2016, S0925-8388(15): 311-324.

[75] Mo X K, Liu Y F, Li Y J. Effect of additives on particle characteristics of barium titanate nanopowder by hydrothermal synthesis [J]. Material Research Innovations, 2008, 12(1): 35-39.

[76] Rezaee S, Ranjbar K, Kiasat A R. The effect of surfactant on the sol-gel synthesis of alumina-zirconia nanopowders [J]. Ceramics International, 2018, 44(16): 19963-19969.

[77] Zhao P J, Wang L, Bian L, et al. Growth mechanism, modified morphology and optical properties of coral-like BaTiO3 architecture through CTAB assisted synthesis [J]. J.Mater. Sci. Technol. 2015, 31(2) 223-228.

[78] Li J, Inukai K, Tsuruta A, et al. Synthesis of highly disperse tetragonal BaTiO3 nanoparticles with core-shell by a hydrothermal method [J]. Journal of Asian Ceramic Societies, 2017, 5(4): 444-451.

[79] Chen T, Jie M, Pei S, et al. Room temperature synthesised BaTiO3 for photocatalytic hydrogen evolution [J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 754(1): 184-189.

[80] Lee H W, Moon S, Choi C H, et al. Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method [J]. Journal of the American Ceramic Society, 2012, 95(8): 2429-2434.

[81] Sun W, Liu W, Li J. Effects of chloride ions on hydrothermal synthesis of tetragonal BaTiO3 by microwave heating and conventional heating[J]. Powder Technology, 2006, 166(2): 55-59.

[82] Chen H,Wang J,Yin X,et al. hydrothermal synthesis of BaTiO3 nanoparticles and role of pva concentration in preparation hydrothermal synthesis of BaTiO3 nanoparticles [J]. Materials Research Express, 2019, 6(5): 055028.

[83] Lencka M M, Riman R E. Thermodynamic modeling of hydrothermal synthesis of ceramic powders [J]. Chemistry of materials, 1993, 5(1): 61-70.

[84] Adam J, Klein G, Lehnert T. Hydroxyl content of BaTiO3 nanoparticles with varied Size [J]. J. Am. Ceram. Soc. 2013, 96(9): 2987-2993.

[85] Jooho M, Enter S, Tuo L. Phase development of barium titanate from chemically modified amorphous titanium (hydrous)oxide precursor [J]. Journal of European Ceramic Society, 2002, 22(6): 809-815.

[86] 李军,李三喜,薛健,等.醇对低温水热合成四方相钛酸钡的影响[J]. 硅酸盐通报, 2013, 32(2):5.

[87] 仲维卓,夏长泰.水热条件下BaTiO3晶粒中OH-缺陷的形成[J]. 人工晶体学报,1996, 25(3):192-197.

[88] Zanfir A V, Voicu G, Jinga S I, et al. Low-temperature synthesis of BaTiO3 nanopowders [J]. Ceramics International, 2016, 42(1):1672-1678.

[89] Zeng H C, Ostwald Ripening: A synthetic approach for hollow nanomaterials [J], Curr. Nanosci.2007, 12( 3): 177-181.

[90] 蒲永平,陈寿田.水热法合成四方相超BaTiO3粉体的研究进展[J].材料导报,2003, 17(11): 44-46.

[91] 邹晨,金向朝,鲍婕,等.水热法制备四方相钛酸钡纳米粉末的工艺研究[J]. 绝缘材料, 2004, 37(2): 25-27.

[92] Chen H J, Chen Y W. Hydrothermal synthesis of barium titanate [J]. Industrial and Engineering Chemistry Research, 2003, 42(3): 473-483.

[93] Mao Y, Mao S, Ye Z G, et al. Solvothermal synthesis and Curie temperature of monodispersed barium titanate nanoparticles [J]. Materials Chemistry and Physics, 2010, 124(2-3): 1232-1238.

[94] Xu G, Ren Z, Du P, et al. Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires [J], Advanced Materials, 2005, 17(7): 907-910.

中图分类号:

 TQ174.1    

条码号:

 002000064671    

馆藏号:

 TD10052894    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式