- 无标题文档
查看论文信息

中文题名:

 

水泥熟料矿物晶体结构与水化活性分子模拟研究

    

姓名:

 陶勇    

学号:

 104977160103    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 水泥混凝土材料分子模拟    

第一导师姓名:

 王发洲    

第一导师院系:

 武汉理工大学    

完成日期:

 2021-06-30    

答辩日期:

 2021-09-18    

中文关键词:

 

水泥熟料 ; 晶体结构 ; 反应活性 ; 分子模拟 ; 水化热-动力学

    

中文摘要:

尽管熟料矿物的晶体结构与水化活性已经研究了一百多年,但目前实验研究仍然没能阐明熟料矿物性质与电子结构之间的本质联系。为此,本文基于第一性原理计算和分子动力学模拟系统研究了C3S、C2S、C3A和C4AF四种熟料矿物的晶体结构与水化活性,从原子尺度揭示了熟料矿物本征水化活性与其晶体结构和电子结构的本质联系,探讨了掺杂离子对熟料矿物反应活性的影响机制,同时对熟料水化热-动力学模拟进行了初步探索,主要结论如下:
(1)C4AF晶体结构中Fe和Al原子的占位机制
C4AF中Fe和Al的占位遵循“均质层原理”,即Fe和Al原子并不是随意地占据八面体和四面体位置,它们更倾向于在b轴方向上逐层交替地排列而在每一层只包含Fe或Al原子。Fe原子倾向于占据八面体位置,但不能完全占据八面体位置。因为尽管Fe原子完全占据八面体位置时体系的焓最低,但随着温度升高,Fe部分占据八面体位置时体系的熵增加更快,并且在室温时熵对自由能的贡献超过了焓,导致Fe部分占据八面体位置时体系更加稳定。
(2)C3S、C2S、C3A和C4AF的反应活性位点和水化特征
四种熟料晶体的亲电反应活性位点都位于O离子周围,但C3S中的亲电反应位点主要位于离子化的O而不是[SiO4]四面体中的O,表明离子化O具有更高的反应活性。C2S、C3S和C3A的亲核反应活性位点主要位于Ca离子周围,而C4AF的亲核反应活性位点位于Fe离子周围,这是由于C4AF的导带底主要由Fe3d能级贡献,而其他三种熟料晶体的导带底主要由Ca3d能级贡献。C4AF中Al比Fe具有更高的反应活性。不论是Al还是Fe,它们的四配位结构都比六配位结构具有更高的反应活性。
(3)Mn、Zn和Cu离子在熟料矿相中的缺陷形成机制及其对熟料水化活性的影响机制
C4AF是四种熟料矿相中最有利于固溶Mn、Zn和Cu的矿相,且它们的引入有利于C4AF晶体的稳定。Ca离子置换是硅酸盐和铝酸盐相中Mn、Zn和Cu杂质离子最有利的缺陷形式。熟料晶体中引入的杂质离子总是倾向于取代与杂质元素本身电子结构最相似的原子,以保持形成的化学键的失配最低。这种化学键的失配程度可以通过键级差异来评价。
对于C3S、C2S和C3A,掺杂离子在能带间隙引入了杂质能级,导致亲核反应活性位点从Ca离子转移到缺陷离子。而对于C4AF,引入的杂质能级被本身的Fe3d能级所掩盖,因此无法改变C4AF的亲核反应活性位点。Cu和Zn掺杂在多数情况下导致Ca离子的有效电荷降低,但增加了Fe离子的有效电荷,意味着Cu和Zn掺杂对C4AF的影响作用与其他三种熟料矿相有所不同。
(4)β-C2S的溶解热力学和动力学
本文基于经典的ClayFF力场开发了可用于模拟硅酸盐溶解过程的新力场ClinkerFF。β-C2S的Ca离子溶解反应过程需要经历kink结构、双配体结构、“内球形吸附”和“外球形吸附”四个阶段。计算得到的Ca离子溶解自由能势垒为33.8 kJ/mol,与实验结果32 kJ/mol十分接近。溶解的Ca离子并不能完全自由地运动,而是在表层水(约2~3个水分子层)中不断振荡。Ca离子需要克服表层水的扩散自由能势垒(23 kJ/mol)才能进入溶液深处成为自由移动的离子。动力学模拟计算了Ca离子溶解的每个反应步骤的速率常数、平衡常数和Ca离子活度。计算的Ca离子活度为3.60×10-5,位于实验结果的区间范围2.44×10-5 ~ 8.75×10-5

参考文献:

[1] Maddalena R, Roberts J J, Hamilton A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements[J]. Journal of Cleaner Production, 2018, 186: 933-942.

[2] Amato I, Green cement: Concrete solutions[J]. Nature News, 2013, 494: 300-301.

[3] Liu X, Fan Y, Wang C. An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry[J]. Applied Energy, 2017, 185: 671-686.

[4] Shen W, Liu Y, Yan B, et al. Cement industry of China: Driving force, environment impact and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 618-628.

[5] Liu Z, Guan D, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524 (7565): 335-338.

[6] Dunstetter F, Noirfontaine M N D, Courtial M. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 1. Structural data: review and unified analysis[J]. Cement and Concrete Research, 2006, 36 (1): 39-53.

[7] Taylor H F W. Cement chemistry, 2nd edition[M]. London: Thomas Telford, 1997.

[8] Jeffery J W. The crystal structure of tricalcium silicate[J]. Acta Crystallographica, 1952, 5 (1): 26–35.

[9] de Noirfontaine M N, Dunstetter F, Courtial M, et al. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 2. Modelling alite for Rietveld analysis, an industrial challenge[J]. Cement and Concrete Research, 2006, 36 (1): 54-64.

[10] Peterson V K, Hunter B A, Ray A. Tricalcium silicate T1 and T2 polymorphic investigations: rietveld refinement at various temperatures using synchrotron powder diffraction[J]. Journal of the American Ceramic Society, 2004, 87 (9): 1625–1634.

[11] Torre á G D L, Bruque S, Campo J, et al. The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses[J]. Cement and Concrete Research, 2002, 32 (9): 1347-1356.

[12] Mumme W G. Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis[J]. Neues Jahrbuch fuer Mineralogie: Monatshefte, 1995, 4: 145-160.

[13] Nishi F, Takeuchi Y, Maki I. Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure[J]. Zeitschrift für Kristallographie - Crystalline Materials, 1985, 172 (3-4): 297-314.

[14] Ll'Inets A M, Malinovskii Y A, Nevskii N N. Crystal structure of the rhombohedral modification of tricalcium silicate Ca3SiO5[J]. Soviet Physics Doklady, 1985, 30.

[15] Takéuchi F N Y. The rhombohedral structure of tricalcium silicate at 1200°C[J]. Zeitschrift für Kristallographie - Crystalline Materials, 1984, 168 (1-4): 197-212.

[16] Pérez-Méndez M, Howie R A, Glasser F P. Ca3SiO5 and its fluorine-stabilized aristotype: Synthesis, stability and postulated structure of Ca6?0.5xSi2O10?xFx[J]. Cement and Concrete Research, 1984, 14 (1): 57-63.

[17] Maki I, Kato K. Phase identification of alite in portland cement clinker[J]. Cement and Concrete Research, 1982, 12 (1): 93-100.

[18] Golovastikov N, Matveeva R, Belov N, Crystal structure of tricalcium silicate, 3CaO·SiO2 = C3S, 1975.

[19] Ludwig H-M, Zhang W. Research review of cement clinker chemistry[J]. Cement and Concrete Research, 2015, 78: 24-37.

[20] Udagawa S, Urabe K, Natsume M, et al. Refinement of the crystal structure of γ-Ca2SiO4[J]. Cement and Concrete Research, 1980, 10 (2): 139-144.

[21] Jost K H, Ziemer B, Seydel R. Redetermination of the structure of β-dicalcium silicate[J]. Acta Crystallographica Section B, 1977, 33 (6): 1696–1700.

[22] Smith D K, Majumdar A, Ordway F. The crystal structure of γ‐dicalcium silicate[J]. Acta Crystallographica, 1965, 18 (4): 787–795.

[23] Mondal P, Jeffery J W. The crystal structure of tricalcium aluminate, Ca3Al2O6[J]. Acta Crystallographica Section B, 1975, 31 (3): 689-697.

[24] Fukuda K, Bessho T, Matsunaga K-i, et al. Chemical zoning of calcium aluminoferrite formed during melt crystallization in CaO–SiO2–Al2O3–Fe2O3 pseudoquaternary system[J]. Cement and Concrete Research, 2004, 34 (9): 1535-1540.

[25] Idrissi M, Diouri A, Damidot D, et al. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase[J]. Cement and Concrete Research, 2010, 40 (8): 1314-1319.

[26] Touzo B, Scrivener K L, Glasser F P. Phase compositions and equilibria in the CaO–Al2O3–Fe2O3–SO3 system, for assemblages containing ye'elimite and ferrite Ca2(Al,Fe)O5[J]. Cement and Concrete Research, 2013, 54: 77-86.

[27] Colville A A, Geller S. The crystal structure of brownmillerite, Ca2FeAlO5[J]. Acta Crystallographica Section B, 1971, 27 (12): 2311–2315.

[28] The-Long P, Ngo T, Kim D H, et al. Electronic structure and magnetic properties of Al-doped Ca2Fe2O5 brownmillerite compounds[J]. Journal of the American Ceramic Society, 2018, 101 (5): 2181-2189.

[29] Wang H, De Leon D, Farzam H. C4AF reactivity—chemistry and hydration of industrial cement[J]. ACI Materials Journal, 2014, 111 (2).

[30] Scrivener K, Ouzia A, Juilland P, et al. Advances in understanding cement hydration mechanisms[J]. Cement and Concrete Research, 2019, 124: 105823.

[31] Thomas J J, Ghazizadeh S, Masoero E. Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of β-dicalcium silicate (C2S)[J]. Cement and Concrete Research, 2017, 100: 322-328.

[32] Scrivener K L, Nonat A. Hydration of cementitious materials, present and future[J]. Cement and Concrete Research, 2011, 41 (7): 651-665.

[33] Barnes P, Bensted J. Structure and performance of cements[M]. CRC Press, 2002.

[34] Stein H, Stevels J. Influence of silica on the hydration of 3CaO·SiO2[J]. Journal of Applied Chemistry, 1964, 14 (8): 338-346.

[35] Kantro D L, Brunauer S, Weise C H. Development of surface in the hydration of calcium silicates. II. Extension of investigations to earlier and later stages of hydration[J]. Journal of Physical Chemistry, 1962, 66 (10): 1804-1809.

[36] Gartner E M, Jennings H M. Thermodynamics of calcium silicate hydrates and their solutions[J]. Journal of the American Ceramic Society, 1987, 70 (10): 743-749.

[37] Skalny J, Young J, Mechanisms of Portland cement hydration, Proceedings, 7th International Symposium Chemical of Cement, Paris, 1980, pp. 3-45.

[38] Tadros M, Skalny J, Kalyoncu R. Early hydration of tricalcium silicate[J]. Journal of the American Ceramic Society, 1976, 59 (7‐8): 344-347.

[39] Parker S C, Allen J P, Arrouvel C, et al., Molecular simulation of mineral surfaces and the role of impurities on surface stability, AIP Conference Proceedings, American Institute of Physics, 2007, pp. 268-287.

[40] Pokrovsky O S, Golubev S, Mielczarski J. Kinetic evidences of the existence of positively charged species at the quartz-aqueous solution interface[J]. Journal of Colloid and Interface Science, 2006, 296 (1): 189-194.

[41] Spagnoli D, Cooke D J, Kerisit S, et al. Molecular dynamics simulations of the interaction between the surfaces of polar solids and aqueous solutions[J]. Journal of Materials Chemistry, 2006, 16 (20): 1997-2006.

[42] Barret P, Ménétrier D. Filter dissolution of C3S as a function of the lime concentration in a limited amount of lime water[J]. Cement and Concrete Research, 1980, 10 (4): 521-534.

[43] Garrault-Gauffinet S, Nonat A. Experimental investigation of calcium silicate hydrate (CSH) nucleation[J]. Journal of Crystal Growth, 1999, 200 (3-4): 565-574.

[44] Odler I, D?rr H. Early hydration of tricalcium silicate II. The induction period[J]. Cement and Concrete Research, 1979, 9 (3): 277-284.

[45] Young J, Tong H, Berger R. Compositions of solutions in contact with hydrating tricalcium silicate pastes[J]. Journal of the American Ceramic Society, 1977, 60 (5‐6): 193-198.

[46] Brown P W, Franz E, Frohnsdorff G, et al. Analyses of the aqueous phase during early C3S hydration[J]. Cement and Concrete Research, 1984, 14 (2): 257-262.

[47] Damidot D, Nonat A. C3S hydration in diluted and stirred suspensions: (I) study of the two kinetic steps[J]. Advances in Cement Research, 1994, 6 (21): 27-35.

[48] Garrault S, Finot E, Lesniewska E, et al. Study of CSH growth on C3S surface during its early hydration[J]. Materials and Structures, 2005, 38 (4): 435-442.

[49] Zingg A, Winnefeld F, Holzer L, et al. Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases[J]. Journal of Colloid and Interface Science, 2008, 323 (2): 301-312.

[50] Juilland P, Gallucci E, Flatt R, et al. Dissolution theory applied to the induction period in alite hydration[J]. Cement and Concrete Research, 2010, 40 (6): 831-844.

[51] Scrivener K L, Juilland P, Monteiro P J M. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research, 2015, 78: 38-56.

[52] Ghouleh Z, Shao Y. Turning municipal solid waste incineration into a cleaner cement production[J]. Journal of Cleaner Production, 2018, 195: 268-279.

[53] Li Y C, Min X B, Ke Y, et al. Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material[J]. Journal of Hazardous materials, 2018, 344: 343-349.

[54] Zhang M, Yang C, Zhao M, et al. Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate[J]. Journal of Hazardous materials, 2018, 342: 242-251.

[55] Zhang N, Li H, Zhao Y, et al. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag[J]. Journal of Hazardous materials, 2016, 306: 67-76.

[56] Karamalidis A K, Voudrias E A. Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration of refinery oily sludge[J]. Environmental engineering science, 2009, 26 (1): 81-96.

[57] 兰明章, 崔素萍, 王彩云. Pb2+、Zn2+在水泥混凝土中的浸出性讨论[J]. 水泥, 2006, 77 (2): 281-287.

[58] 管宗甫, 陈益民, 秦守婉. 杂质离子对硅酸盐水泥熟料烧成影响的研究进展[J]. 硅酸盐学报, 2003, 31 (8): 795-800.

[59] Kim Y M, Hong S H. Influence of minor ions on the stability and hydration rates of β‐dicalcium silicate[J]. Journal of the American Ceramic Society, 2004, 87 (5): 900-905.

[60] Nakshatra B. Singh S R, and Neelam Singh. Highly reactive β-dicalcium silicate[J]. Journal of the American Ceramic Society, 2002, 85 (9): 2171-2176.

[61] Stephan D, Maleki H, Kn?fel D, et al. Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part I. C3S[J]. Cement and Concrete Research, 1999, 29 (4): 545-552.

[62] Suzuki K, Ito S, Nishikawa T, et al. Effect of Na, K, and Fe on the formation of α- and β-Ca2SiO4[J]. Cement and Concrete Research, 1986, 16 (6): 885-892.

[63] 张文生, 任雪红, 欧阳世翕. 离子固溶对硅酸三钙结构及性能影响的研究进展[J]. 硅酸盐学报, 2011, 39 (10): 1666-1672.

[64] 商得辰. 重金属离子在水泥熟料中的固化行为及作用机理研究[D]. 武汉: 武汉理工大学, 2017.

[65] 夏中升, 王茂国, 王发洲, et al. 含锰中间相矿物形成及其固溶分布[J]. 硅酸盐学报, 2017, 45 (5): 614-622.

[66] Gineys N, Aouad G, Sorrentino F, et al. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn[J]. Cement and Concrete Research, 2011, 41 (11): 1177-1184.

[67] Stephan D, Wistuba S. Crystal structure refinement and hydration behaviour of 3CaO·SiO2 solid solutions with MgO, Al2O3 and Fe2O3[J]. Journal of the European Ceramic Society, 2006, 26 (1-2): 141-148.

[68] Stephan D, Dikoundou S N, Raudaschl-Sieber G. Influence of combined doping of tricalcium silicate with MgO, Al2O3 and Fe2O3: Synthesis, grindability, X-ray diffraction and 29Si NMR[J]. Materials and Structures, 2008, 41 (10): 1729-1740.

[69] 任雪红, 张文生, 欧阳世翕. 多离子复合掺杂对阿利特介稳结构的影响[J]. 硅酸盐学报, 2012, 40 (5): 664-670.

[70] Li X, Xu W, Wang S, et al. Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism[J]. Construction and Building Materials, 2014, 58: 182-192.

[71] Stephan D, Maleki H, Kn?fel D. Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part II. C3A and C4AF[J]. Cement and Concrete Research, 1999, 29 (5): 545-552.

[72] Stephan D, Mallmann R, Kn?fel D, et al. High intakes of Cr, Ni, and Zn in clinker Part II. Influence on the hydration properties[J]. Cement and Concrete Research, 1999, 29 (12): 1959-1967.

[73] Stephan D, Mallmann R, Kn?fel D, et al. High intakes of Cr, Ni, and Zn in clinker Part I. Influence on burning process and formation of phases[J]. Cement and Concrete Research, 1999, 29 (12): 1949-1957.

[74] Kakali G, Tsivilis S, Tsialtas A. Hydration of ordinary portland cements made from raw mix containing transition element oxides[J]. Cement and Concrete Research, 1998, 28 (3): 335-340.

[75] Kolovos K G, Barafaka S, Kakali G, et al. CuO and ZnO addition in the cement raw mix: Effect on clinkering process and cement hydration and properties[J]. Ceramics- Silikaty, 2005, 49 (3): 205-212.

[76] Bazzoni A, Ma S, Wang Q, et al. The effect of magnesium and zinc ions on the hydration kinetics of C3S[J]. Journal of the American Ceramic Society, 2014, 97 (11): 3684-3693.

[77] Gineys N, Aouad G, Damidot D. Managing trace elements in Portland cement – Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts[J]. Cement & Concrete Composites, 2010, 32 (8): 563-570.

[78] Hashem F S, Amin M S, Hekal E E. Stabilization of Cu (II) wastes by C3S hydrated matrix[J]. Construction and Building Materials, 2011, 25 (8): 3278-3282.

[79] Ma X W, Chen H X, Wang P M. Effect of CuO on the formation of clinker minerals and the hydration properties[J]. Cement and Concrete Research, 2010, 40 (12): 1681-1687.

[80] Tashiro C, Oba J. The effects of Cr2O3, Cu(OH)2, ZnO and PbO on the compressive strength and the hydrates of the hardened C3A paste[J]. Cement and Concrete Research, 1979, 9 (2): 253-258.

[81] Wafaa, Hegazi S, Hekal E, et al. Effect of Zn, Cu, Cr and Pb chlorides on the formation of tricalcium aluminate trisulfate hydrate[J]. Journal of Materials Science & Technology, 2008, 24 (6): 867-872.

[82] Gineys N, Aouad G, Damidot D. Managing trace elements in Portland cement – Part II: Comparison of two methods to incorporate Zn in a cement[J]. Cement & Concrete Composites, 2011, 33 (6): 629-636.

[83] Lv Y, Li X, De Schutter G, et al. Stabilization of Cr(III) wastes by C3S and C3S hydrated matrix: Comparison of two incorporation methods[J]. Materials and Structures, 2015, 49 (8): 3109-3118.

[84] Kolovos K, Tsivilis S, Kakali G. The effect of foreign ions on the reactivity of the CaO–SiO2–Al2O3–Fe2O3 system Part II: Cations[J]. Cement and Concrete Research, 2002, 32 (3): 463-469.

[85] Wang F-Z, Shang D-C, Wang M-G, et al. Incorporation and substitution mechanism of cadmium in cement clinker[J]. Journal of Cleaner Production, 2016, 112: 2292-2299.

[86] Tommaseo C E, Kersten M. Aqueous solubility diagrams for cementitious waste stabilization systems. 3. Mechanism of zinc immobilizaton by calcium silicate hydrate[J]. Environmental Science & Technology, 2002, 36 (13): 2919-2925.

[87] Thomas N L, Jameson D A, Double D D. The effect of lead nitrate on the early hydration of portland cement[J]. Cement and Concrete Research, 1981, 11 (1): 143-153.

[88] Weeks C, Hand R J, Sharp J H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate[J]. Cement & Concrete Composites, 2008, 30 (10): 970-978.

[89] Hou D. Molecular simulation on cement-based materials[M]. Singapore: Springer, 2020.

[90] Jensen F. Introduction to computational chemistry[M]. John wiley & sons, 2017.

[91] Young D. Computational chemistry: A practical guide for applying techniques to real world problems[M]. John Wiley & Sons, 2004.

[92] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140 (4A): A1133-A1138.

[93] Parr R G. Density functional theory of atoms and molecules[M]. Dordrecht: Springer, 1980.

[94] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications[M]. Elsevier, 2001.

[95] Abdolhosseini Qomi M J, Krakowiak K J, Bauchy M, et al. Combinatorial molecular optimization of cement hydrates[J]. Nature Communications, 2014, 5: 4960.

[96] Abdolhosseini Qomi M J, Ulm F-J, Pellenq R J-M. Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations[J]. Journal of the American Ceramic Society, 2012, 95 (3): 1128-1137.

[97] Bauchy M, Abdolhosseini Qomi M J, Bichara C, et al. Nanoscale structure of cement: Viewpoint of rigidity theory[J]. Journal of Physical Chemistry C, 2014, 118 (23): 12485-12493.

[98] Bauchy M, Qomi M J A, Ulm F-J, et al. Order and disorder in calcium–silicate–hydrate[J]. Journal of Chemical Physics, 2014, 140 (21): 214503.

[99] Manzano H, Durgun E, Abdolhosseine Qomi M J, et al. Impact of chemical impurities on the crystalline cement clinker phases determined by atomistic simulations[J]. Crystal growth & design, 2011, 11 (7): 2964-2972.

[100] Qomi M J A, Bauchy M, Ulm F-J, et al. Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates[J]. Journal of Chemical Physics, 2014, 140 (5): 054515.

[101] Hou D, Li D, Yu J, et al. Insights on capillary adsorption of aqueous sodium chloride solution in the nanometer calcium silicate channel: A molecular dynamics study[J]. Journal of Physical Chemistry C, 2017, 121 (25): 13786-13797.

[102] Hou D, Li Z, Zhao T. Reactive force field simulation on polymerization and hydrolytic reactions in calcium aluminate silicate hydrate (C-A-S-H) gel: Structure, dynamics and mechanical properties[J]. Rsc Advances, 2015, 5 (1): 448-461.

[103] Hou D, Zhao T, Jin Z, et al. Structure, reactivity and mechanical properties of water ultra-confined in the ordered crystal: A case study of jennite[J]. Microporous and Mesoporous Materials, 2015, 204: 106-114.

[104] Hou D, Zhao T, Ma H, et al. Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties[J]. Journal of Physical Chemistry C, 2015, 119 (3): 1346-1358.

[105] Jiang J, Wang P, Hou D. The mechanism of cesium ions immobilization in the nanometer channel of calcium silicate hydrate: A molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2017, 19 (41): 27974-27986.

[106] Hou D, Li Z. Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite[J]. Microporous and Mesoporous Materials, 2014, 195: 9-20.

[107] Zhang N, Carrez P, Shahsavari R. Screw-dislocation-induced strengthening-toughening mechanisms in complex layered materials: The case study of tobermorite[J]. ACS Appl Mater Interfaces, 2017, 9 (2): 1496-1506.

[108] Zhou Y, Hou D, Jiang J, et al. Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: A case study of tobermorite[J]. Physical Chemistry Chemical Physics, 2017, 19 (23): 15145-15159.

[109] Eftekhari M, Mohammadi S. Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C-S-H) composite[J]. Composites Part a-Applied Science and Manufacturing, 2016, 82: 78-87.

[110] Hou D, Zhu Y, Lu Y, et al. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study[J]. Materials Chemistry and Physics, 2014, 146 (3): 503-511.

[111] Ioannidou K, Pellenq R J M, Del Gado E. Controlling local packing and growth in calcium-silicate-hydrate gels[J]. Soft Matter, 2014, 10 (8): 1121-1133.

[112] Pellenq R J-M, Kushima A, Shahsavari R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences, 2009, 106 (38): 16102-16107.

[113] Cygan R T, Liang J-J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B, 2004, 108 (4): 1255-1266.

[114] Mishra R K, Flatt R J, Heinz H. Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules[J]. Journal of Physical Chemistry C, 2013, 117 (20): 10417-10432.

[115] Liu L, Jaramillo-Botero A, Goddard W A, III, et al. Development of a reaxff reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations[J]. Journal of Physical Chemistry A, 2012, 116 (15): 3918-3925.

[116] Manzano H, Durgun E, Lopez-Arbeloa I, et al. Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations[J]. ACS Appl Mater Interfaces, 2015, 7 (27): 14726-14733.

[117] Manzano H, Moeini S, Marinelli F, et al. Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties[J]. Journal of the American Chemical Society, 2012, 134 (4): 2208-2215.

[118] Manzano H, Pellenq R J, Ulm F J, et al. Hydration of calcium oxide surface predicted by reactive force field molecular dynamics[J]. Langmuir, 2012, 28 (9): 4187-4197.

[119] Shahsavari R, Pellenq R J, Ulm F J. Empirical force fields for complex hydrated calcio-silicate layered materials[J]. Physical Chemistry Chemical Physics, 2011, 13 (3): 1002-1011.

[120] Mishra R K, Mohamed A K, Geissbuhler D, et al. cemff: A force field database for cementitious materials including validations, applications and opportunities[J]. Cement and Concrete Research, 2017, 102: 68-89.

[121] Hou D, Ma H, Yu Z, et al. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties[J]. Acta Materialia, 2014, 67: 81-94.

[122] Hou D, Zhao T, Wang P, et al. Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading[J]. Engineering Fracture Mechanics, 2014, 131: 557-569.

[123] Bonnaud P A, Ji Q, Coasne B, et al. Thermodynamics of water confined in porous calcium-silicate-hydrates[J]. Langmuir, 2012, 28 (31): 11422-11432.

[124] Pan T, Xia K, Wang L. Chloride binding to calcium silicate hydrates (C-S-H) in cement paste: A molecular dynamics analysis[J]. International Journal of Pavement Engineering, 2010, 11 (5): 367-379.

[125] Zhou Y, Hou D, Geng G, et al. Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites[J]. Physical Chemistry Chemical Physics, 2018, 20 (12): 8247-8266.

[126] Zhou Y, Hou D, Jiang J, et al. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites[J]. Chemical Physics Letters, 2017, 687: 184-187.

[127] Morshedifard A, Masoumi S, Abdolhosseini Qomi M J. Nanoscale origins of creep in calcium silicate hydrates[J]. Nature Communications, 2018, 9 (1): 1785.

[128] Manzano H, Dolado J S, Ayuela A. Structural, mechanical, and reactivity properties of tricalcium aluminate using first-principles calculations[J]. Journal of the American Ceramic Society, 2009, 92 (4): 897-902.

[129] Wang Q, Manzano H, Guo Y, et al. Hydration mechanism of reactive and passive dicalcium silicate polymorphs from molecular simulations[J]. Journal of Physical Chemistry C, 2015, 119 (34): 19869-19875.

[130] Durgun E, Manzano H, Pellenq R J M, et al. Understanding and controlling the reactivity of the calcium silicate phases from first principles[J]. Chemistry of Materials, 2012, 24 (7): 1262-1267.

[131] Saritas K, Ataca C, Grossman J C. Predicting electronic etructure in tricalcium silicate phases with impurities using first-principles[J]. Journal of Physical Chemistry C, 2015, 119 (9): 5074-5079.

[132] Winkler B, Pickard C, Milman V. Applicability of a quantum mechanical 'virtual crystal approximation' to study Al/Si-disorder[J]. Chemical Physics Letters, 2002, 362 (3-4): 266-270.

[133] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6 (1): 15-50.

[134] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 48 (17): 13115-13118.

[135] Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie - Crystalline Materials, 2005, 220 (5/6): 567-570.

[136] Delley B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics, 2000, 113 (18): 7756-7764.

[137] Ching W-Y, Rulis P. Electronic structure methods for complex materials: The orthogonalized linear combination of atomic orbitals[M]. Oxford University Press, 2012.

[138] Gale J D. GULP: A computer program for the symmetry-adapted simulation of solids[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93 (4): 629-637.

[139] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117 (1): 1-19.

[140] Bonomi M, Branduardi D, Bussi G, et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics[J]. Computer Physics Communications, 2009, 180 (10): 1961-1972.

[141] Laio A, Parrinello M. Escaping free-energy minima[J]. Proceedings of the National Academy of Sciences, 2002, 99 (20): 12562.

[142] Torrie G, Valleau J. Monte Carlo study of a phase‐separating liquid mixture by umbrella sampling[J]. Journal of Chemical Physics, 1977, 66 (4): 1402-1408.

[143] Torrie G M, Valleau J P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid[J]. Chemical Physics Letters, 1974, 28 (4): 578-581.

[144] Sprik M, Ciccotti G. Free energy from constrained molecular dynamics[J]. Journal of Chemical Physics, 1998, 109 (18): 7737-7744.

[145] Straatsma T, McCammon J. Multiconfiguration thermodynamic integration[J]. Journal of Chemical Physics, 1991, 95 (2): 1175-1188.

[146] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77.

[147] PE B. Projector augmented-wave method[J]. Physical Review B, 1994, 50 (24): 17953-17979.

[148] Chaput L, Togo A, Tanaka I, et al. Phonon-phonon interactions in transition metals[J]. Physical Review B, 2011, 84 (9): 3519-3523.

[149] Togo A, Chaput L, Tanaka I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2 , Ti3AlC2, and Ti3GeC2[J]. Physical Review B, 2010, 81 (17): 1248-1248.

[150] Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55 (16): 10355-10368.

[151] Dharmawardhana C C, Misra A, Ching W Y. Quantum mechanical metric for internal cohesion in cement crystals[J]. Sci Rep, 2014, 4: 7332.

[152] Urabe K, Nakano H, Morita H. Structural modulations in monoclinic tricalcium silicate solid solutions doped with zinc oxide, M(I), M(II), and M(III)[J]. Journal of the American Ceramic Society, 2002, 85 (2): 423-429.

[153] Diouri A, Boukhari A, Aride J, et al. Stable Ca3SiO5 solid solution containing manganese and phosphorus[J]. Cement and Concrete Research, 1997, 27 (8): 1203-1212.

[154] Puertas F, Glasser F P, Ma B V, et al. Influence of the kiln atmosphere on manganese solid solution in Ca3SiO5 and Ca2SiO4[J]. Cement and Concrete Research, 1988, 18 (5): 783-788.

[155] Puertas F, Soria J, Blanco-Varela M T, et al. Modification on the tricalcium aluminate phase in cements by manganese substitution[J]. Cement and Concrete Research, 1988, 18 (6): 837-842.

[156] Puertas F, Varela M T B, Dominguez R. Characterization of Ca2AlMnO5. A comparative study between Ca2AlMnO5 and Ca2AlFeO5[J]. Cement and Concrete Research, 1990, 20 (3): 429-438.

[157] Abakumov A M, Rozova M G, Antipov E V. Complex manganese oxides with the brownmillerite structure: Synthesis, crystal chemistry and properties[J]. Russian Chemical Reviews, 2004, 73 (9): 847-860.

[158] Hashem F S, Amin M S, Hekal E E. Kinetics of leaching of Cr3+ and Cu2+ ions from doped hydrated C3A-gypusm matrix[J]. HBRC, 2011, 7 (3): 1-11.

[159] Rahimi-Aghdam S, Ba?ant Z P, Abdolhosseini Qomi M J. Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H[J]. Journal of the Mechanics and Physics of Solids, 2017, 99: 211-224.

[160] Nicoleau L, Nonat A, Perrey D. The di- and tricalcium silicate dissolutions[J]. Cement and Concrete Research, 2013, 47: 14-30.

[161] Thomas J J. The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method[J]. Journal of the American Ceramic Society, 2012, 95 (10): 3291-3296.

[162] Ye S, Feng P, Liu Y, et al. In situ nano-scale observation of C3A dissolution in water[J]. Cement and Concrete Research, 2020, 132: 106044.

[163] Brand A S, Gorham J M, Bullard J W. Dissolution rate spectra of β-dicalcium silicate in water of varying activity[J]. Cement and Concrete Research, 2019, 118: 69-83.

[164] Brand A S, Bullard J W. Dissolution kinetics of cubic tricalcium aluminate measured by digital holographic microscopy[J]. Langmuir, 2017, 33 (38): 9645-9656.

[165] Myers R J, Geng G, Li J, et al. Role of adsorption phenomena in cubic tricalcium aluminate dissolution[J]. Langmuir, 2017, 33 (1): 45-55.

[166] Bibi I, Arvidson R, Fischer C, et al. Temporal evolution of calcite surface dissolution kinetics[J]. Minerals, 2018, 8 (6): 256.

[167] Miyata K, Tracey J, Miyazawa K, et al. Dissolution processes at step edges of calcite in water investigated by high-speed frequency modulation atomic force microscopy and simulation[J]. Nano Letters, 2017, 17 (7): 4083-4089.

[168] Dove P M, Han N, De Yoreo J J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior[J]. Proceedings of the National Academy of Sciences, 2005, 102 (43): 15357-15362.

[169] Bullard J W. A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model[J]. Journal of the American Ceramic Society, 2008, 91 (7): 2088-2097.

[170] Thomas J J, Biernacki J J, Bullard J W, et al. Modeling and simulation of cement hydration kinetics and microstructure development[J]. Cement and Concrete Research, 2011, 41 (12): 1257-1278.

[171] Martin P, Manzano H, Dolado J S. Mechanisms and dynamics of mineral dissolution: A new kinetic Monte Carlo model[J]. Advanced Theory and Simulations, 2019, 2 (10): 1900114.

[172] Chen J, Martin P, Xu Z, et al. A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale[J]. Cement and Concrete Research, 2021, 142: 106377.

[173] Coopamootoo K, Masoero E. Simulations of crystal dissolution using interacting particles: Prediction of stress evolution and rates at defects and application to tricalcium silicate[J]. Journal of Physical Chemistry C, 2020, 124 (36): 19603-19615.

[174] K?stner J. Umbrella sampling[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1 (6): 932-942.

[175] Bussi G, Laio A. Using metadynamics to explore complex free-energy landscapes[J]. Nature Reviews Physics, 2020, 2 (4): 200-212.

[176] Park S, Schulten K. Calculating potentials of mean force from steered molecular dynamics simulations[J]. Journal of Chemical Physics, 2004, 120 (13): 5946-5961.

[177] Darve E, Pohorille A. Calculating free energies using average force[J]. Journal of Chemical Physics, 2001, 115 (20): 9169-9183.

[178] Zwanzig R W. High‐temperature equation of state by a perturbation method. I. Nonpolar gases[J]. Journal of Chemical Physics, 1954, 22 (8): 1420-1426.

[179] Berne B J, Ciccotti G, Coker D F. Classical and quantum dynamics in condensed phase simulations: Proceedings of the International School of Physics[M]. World Scientific, 1998.

[180] Stack A G, Raiteri P, Gale J D. Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories[J]. Journal of the American Chemical Society, 2012, 134 (1): 11-14.

[181] Kurdowski W, Duszak S, Trybalska B. Belite produced by means of low-temperature synthesis[J]. Cement and Concrete Research, 1997, 27 (1): 51-62.

[182] Cuesta A, Ayuela A, Aranda M A G. Belite cements and their activation[J]. Cement and Concrete Research, 2021, 140: 106319.

[183] Staněk T, Sulovsky P. Active low-energy belite cement[J]. Cement and Concrete Research, 2015, 68: 203-210.

[184] Kerisit S, Weare J H, Felmy A R. Structure and dynamics of forsterite–scCO2/H2O interfaces as a function of water content[J]. Geochimica et Cosmochimica Acta, 2012, 84: 137-151.

[185] Kerisit S, Liu C, Ilton E S. Molecular dynamics simulations of the orthoclase (001)- and (010)-water interfaces[J]. Geochimica et Cosmochimica Acta, 2008, 72 (6): 1481-1497.

[186] Abdolhosseini Qomi M J, Ulm F-J, Pellenq R J M. Physical origins of thermal properties of cement paste[J]. Physical Review Applied, 2015, 3 (6): 064010.

[187] Manzano H, Dolado J S, Ayuela A. Elastic properties of the main species present in Portland cement pastes[J]. Acta Materialia, 2009, 57 (5): 1666-1674.

[188] Dharmawardhana C, Bakare M, Misra A, et al. Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates[J]. Journal of the American Ceramic Society, 2016, 99 (6): 2120-2130.

[189] Durgun E, Manzano H, Kumar P V, et al. The characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principles[J]. Journal of Physical Chemistry C, 2014, 118 (28): 15214-15219.

[190] Bracco J N, Stack A G, Steefel C I. Upscaling calcite growth rates from the mesoscale to the macroscale[J]. Environmental Science & Technology, 2013, 47 (13): 7555-7562.

[191] Mori K, Kiyanagi R, Yonemura M, et al. Charge states of Ca atoms in β-dicalcium silicate[J]. Journal of Solid State Chemistry, 2006, 179 (11): 3286-3294.

[192] Tao Y, Li N, Zhang W, et al. Understanding the zinc incorporation into silicate clinker during waste co-disposal of cement kiln: A density functional theory study[J]. Journal of Cleaner Production, 2019, 232: 329-336.

[193] Yan H, Park C, Ahn G, et al. Termination and hydration of forsteritic olivine (0 1 0) surface[J]. Geochimica et Cosmochimica Acta, 2014, 145: 268-280.

[194] de Leeuw N H, Parker S C, Catlow C R A, et al. Modelling the effect of water on the surface structure and stability of forsterite[J]. Physics and Chemistry of Minerals, 2000, 27 (5): 332-341.

[195] Brenner D W, Shenderova O A, Harrison J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J]. Journal of Physics: Condensed Matter, 2002, 14 (4): 783.

[196] Barducci A, Bonomi M, Parrinello M. Metadynamics[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1 (5): 826-843.

[197] Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method[J]. Physical Review Letters, 2008, 100 (2): 020603.

[198] Chandler D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation[J]. Journal of Chemical Physics, 1978, 68 (6): 2959-2970.

[199] Longsworth L. Temperature dependence of diffusion in aqueous solutions[J]. Journal of Physical Chemistry, 1954, 58 (9): 770-773.

[200] Korb J-P, McDonald P, Monteilhet L, et al. Comparison of proton field-cycling relaxometry and molecular dynamics simulations for proton–water surface dynamics in cement-based materials[J]. Cement and Concrete Research, 2007, 37 (3): 348-350.

[201] Fratini E, Faraone A, Ridi F, et al. Hydration water dynamics in tricalcium silicate pastes by time-resolved incoherent elastic neutron scattering[J]. Journal of Physical Chemistry C, 2013, 117 (14): 7358-7364.

[202] Masoumi S, Zare S, Valipour H, et al. Effective interactions between calcium-silicate-hydrate nanolayers[J]. Journal of Physical Chemistry C, 2019, 123 (8): 4755-4766.

[203] Masoumi S, Valipour H, Abdolhosseini Qomi M J. Intermolecular forces between nanolayers of crystalline calcium-silicate-hydrates in aqueous medium[J]. Journal of Physical Chemistry C, 2017, 121 (10): 5565-5572.

[204] Liu T, Gautam S S, Daemen L L, et al. Vibrational behavior of water adsorbed on forsterite (Mg2SiO4) surfaces[J]. ACS Earth and Space Chemistry, 2020, 4 (7): 1050-1063.

[205] Kerisit S, Parker S C. Free energy of adsorption of water and metal ions on the {101?4} calcite surface[J]. Journal of the American Chemical Society, 2004, 126 (32): 10152-10161.

[206] Pichler C, Saxer A, Lackner R. Differential-scheme based dissolution/diffusion model for calcium leaching in cement-based materials accounting for mix design and binder composition[J]. Cement and Concrete Research, 2012, 42 (5): 686-699.

[207] Le Gouellec Y A, Elimelech M. Control of calcium sulfate (gypsum) scale in nanofiltration of saline agricultural drainage water[J]. Environmental engineering science, 2002, 19 (6): 387-397.

[208] Wang J H. Tracer-diffusion in liquids. IV. Self-diffusion of calcium ion and chloride ion in aqueous calcium chloride solutions1[J]. Journal of the American Chemical Society, 1953, 75 (7): 1769-1770.

中图分类号:

 TQ172.1    

条码号:

 002000062665    

馆藏号:

 TD10051724    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式