中文题名: |
双驱进给系统误差传递机理及补偿技术研究
|
姓名: |
刘琪
|
学号: |
104971190163
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
080200
|
学科名称: |
工学 - 机械工程
|
学生类型: |
博士
|
学校: |
武汉理工大学
|
院系: |
机电工程学院
|
专业: |
机械工程
|
研究方向: |
数字制造技术与数控装备
|
第一导师姓名: |
卢红
|
第一导师院系: |
机械工程学院
|
完成日期: |
2023-10-11
|
答辩日期: |
2023-10-09
|
中文关键词: |
双驱进给系统 ; 误差传递机理 ; 综合误差模型 ; 状态时变交叉耦
合同步控制 ; 主动误差补偿策略
|
中文摘要: |
︿
双驱进给系统作为龙门移动式数控装备的关键进给运动执行系统,其性能
直接决定装备进给运动的精度和性能。由于双驱进给系统采用双丝杠传动结构,进给运动时双轴伺服特性和传动链刚度特性不一致,双轴驱动力与系统重心产生偏移及双轴动态特性耦合变化,引起双运动轴刚度链变形和产生进给误差。
此外,双驱进给系统中移动部件位移和运动参数变化与耦合影响,摩擦力、惯性力等变化,造成双轴误差差异并变化,增大了双轴同步误差。双轴误差与同步误差耦合传递降低了系统同步精度与进给精度。双驱进给系统误差补偿则是提高双驱进给系统进给精度的共性关键技术和亟待解决的问题。
因此,本文围绕双驱进给系统误差补偿技术,开展误差传递机理与误差建
模以及同步控制策略的理论和实验研究,主要内容如下:
(1)建立了基于双轴耦合误差传递机理的双驱进给系统综合误差模型。
围绕双驱进给系统误差传递机理分析,首先进行基座-双柔性运动轴-工作台构成的双驱进给系统力传递分析,分析双驱进给系统重心偏移、负载变化对双轴间力学耦合性能影响。再基于双驱传动单元误差产生原因,对双驱进给系统误差进行了分析,基于多体运动学理论揭示了双驱进给系统误差传递机理,提出了基于误差传递矩阵表征的双驱进给系统综合误差建模方法,并进行了综合误差建模的案例验证。为双驱进给系统的误差补偿提供理论支撑。
(2)提出了基于柔性运动轴刚度表征的双驱进给系统动力学建模方法。
考虑柔性传动环节,建立了双驱进给系统刚度链表征模型,并探究了刚度链对双驱动态特性的影响。结合双驱进给系统双轴耦合特征,建立了双驱进给系统状态耦合动力学模型,解析了状态参数变化对双驱进给系统动态性能的影响机制。通过对自主研发的双驱进给系统进行模态实验,验证了动力学模型的正确性,进而建立了双驱进给系统状态耦合机械模型,分析了刚度和负载对双驱进给系统力误差的影响规律,为双驱进给系统综合误差的补偿充实了理论基础。
(3)设计了基于误差检测系统与传动链电机电流的双驱进给系统参数辨
识方法。采用敏感性分析方法,辨识了双驱进给系统敏感几何误差项,并基于误差检测系统建立了敏感几何误差预测模型;建立了双驱进给系统比例-比例-积分(P-PI)双环式伺服电机控制模型,解析了双驱进给系统电机电流-轴向振动的复映关系,设计了双驱进给系统随机激励序列,提出了基于传动链电机电流表征的双驱进给系统轴向刚度在线辨识方法;采用了最小二乘与遗传算法合成-牛顿插值方法对双驱进给系统摩擦模型进行了表征。双驱进给系统的参数辨识是形成误差补偿方法的关键环节。
(4)提出了基于状态时变交叉耦合同步控制策略和综合误差模型的双驱
进给系统主动误差补偿策略。设计了基于灰狼算法优化的比例-微分(GWO-PD)交叉耦合同步控制算法,并设计了双摩擦补偿+GWO-PD 控制器,以解决双轴摩擦与单轴跟随误差和双轴同步误差的耦合导致同步控制精度下降的问题;建立了双驱进给系统机电联合模型,探究了状态参数耦合变化对双驱进给系统误差影响规律;阐述了基于运动控制器的开放式数控系统主动误差补偿流程与实施方法,结合虚拟电子轴-外部位置发生器功能实现双驱进给系统主动误差补偿。
(5)开发了双驱进给系统主动误差补偿系统,进行了误差补偿实验分析。搭建双驱进给系统误差补偿实验系统,基于EtherCAT 总线通讯模式,实现硬件之间数据流高速传输;以Visual Studio 为开发平台,采用C#编程语言,设计双驱进给系统误差补偿软件,基于ADS 通讯实现误差补偿软件与开放式数控系统实时交互;设计了双驱进给系统误差补偿实验方案,基于搭载双驱进给系统的龙门移动式雕铣机,进行了同步控制策略对比实验,验证了状态时变交叉耦合同步控制策略的有效性,进行了双驱进给系统误差补偿实验,验证了双驱进给系统主动误差补偿策略的可行性。
本文的研究,对进一步丰富双驱进给系统误差传递机理、补偿方法的研究
具有重要的科学意义,从而对提高搭载双驱进给系统的龙门式数控装备运动精度具有重要的实际应用价值。
﹀
|
参考文献: |
︿
[1]B Erhan , M Atsushi , D Alkan , et al. Mechanical interfaces in machine tools[J]. CIRP Annals - Manufacturing Technology, 2022, 71(2): 647-670. [2]陈吉红. 国产数控系统的技术进步与应用成果[J]. 金属加工(冷加工), 2023(02): 9-14. [3]孟博洋, 李茂月,刘献礼,WANG Lihui,LIANG S Y,王志学.机床智能控制系统体系架构及关键技术研究进展[J].机械工程学报,2021,57(09):147-166 [4]王眇, 张振明, 李龙, 等. 数控技术发展状况及在智能制造中的作用[J]. 航空制造技术, 2021, 64(10): 20-26. [5]桂林,李升.国内重型数控机床的现状及发展趋势[J].中国机械工程,2020,31(23):2780-2787+2797. [6]王磊, 卢秉恒. 中国工作母机产业发展研究[J]. 中国工程科学, 2020, 22(2): 1-160. [7]Hiramoto K , Hansel A , Ding S , et al. A Study on the Drive at Center of Gravity (DCG) Feed Principle and Its Application for Development of High Performance Machine Tool Systems[J]. CIRP Annals - Manufacturing Technology, 2005, 54(1): 333-336. [8]张容磊. 我国智能制造装备产业发展分析(三)[J]. 智能制造, 2020(11): 12-15. [9]日本森精机公司. NMV5000DCG High-Precision, 5-Axis Control Vertical Machining Center [EB/OL]. 日本: 日本森精机公司, [2023-5-13]. https://www.dmgmori.co.jp. [10]西班牙ZAYER公司. 动梁式龙门加工中心[EB/OL].西班牙: ZAYER公司, [2022-10-31]. https://www.zayer.com/cn/product/gantry/aetos/54. [11]德国FOOKE GmbH公司. ENDURA 700 LINEAR动梁式龙门铣床[EB/OL]. 德国: FOOKE GmbH公司, [2022-10-31]. https://www.fooke portalfraesmaschinen.de/en/fraesmaschinen/kompakt-portalfraesmaschine-endurar-700linear#c752. [12]德国Starrag 集团. 龙门式铣床Gantry[EB/OL]. 德国: Droop+Rein公司, [2022-10-31]. https://www.starrag.com/zh-cn/machine/drooprein-ggf/127. [13]德国Physik Instrumente公司. A-341系列的混合龙门XY运动平台[EB/OL].德国: Physik Instrumente公司, [2022-10-31]. https://www.physikinstrumente.com/en/products/air-bearings-stages/a-341-piglide-hgs-hybrid-gantry-412418459. [14]中国兵器工业集团. XK26数控龙门移动式镗铣床[EB/OL]. 武汉: 武汉重型机床集团有限公司, [2022-10-31]. http://www.whhdmt.com/art/2018/10/9/art_5482_133142.html. [15]通用技术集团沈阳机床股份有限公司. GTM500200车铣加工中心[EB/OL]. 大连: 通用技术集团沈阳机床股份有限公司, [2022-10-31]. http://www.smtclsc.com/Products/index.asp. [16]通用技术集团沈阳机床股份有限公司. GMB30/40mr型动龙门式镗铣加工中心[EB/OL]. 大连: 通用技术集团沈阳机床股份有限公司, [2022-10-31]. http://www.syms.cn/jiagongzhongxin/GMB3040mr.html. [17]通用技术集团沈阳机床股份有限公司. 龙门加工中心GMCr系列[EB/OL]. 大连: 通用技术集团沈阳机床股份有限公司, [2022-10-31]. http://www.yijijcc.com/index.php/lm/79.html. [18]沈机集团昆明机床股份有限公司. TGK46100高精度数控卧式坐标镗床[EB/OL]. 昆明: 沈机集团昆明机床股份有限公司, [2022-10-31]. www.kmtcl.com.cn/info/product_detail/18030.html. [19]Ramesh R , Mannan M A , Poo A N . Tracking and contour error control in CNC servo systems[J]. International Journal of Machine Tools & Manufacture, 2005, 45(3): 301-326. [20]I García-Herreros, Kestelyn X , Gomand J , et al. Model-based decoupling control method for dual-drive gantry stages : A case study with experimental validations[J]. Control Engineering Practice, 2013, 21(3): 298–307. [21]杨建国, 范开国, 杜正春. 数控机床误差实时补偿技术[M]. 北京: 机械工业出版社, 2013. [22]李玉霞, 赵万华, 程瑶, 等. 动梁式龙门机床的双驱同步控制系统建模[J]. 西安交通大学学报, 2012, 46(4): 119-124. [23]程瑶, 梁滔, 赵万华. 动梁式龙门机床双轴同步系统的模型建立及不同步误差分析[J]. 机械工程学报, 2013, 49(13): 9. [24]陈琳, 程正波, 钟文, 等. 基于伺服响应差异的龙门双轴同步误差产生研究[J]. 机械设计与制造, 2016(5): 4. [25]胡俊. 重心驱动工作台动力学建模及其特性分析[D]. 武汉: 华中科技大学, 2007. [26]杨晓瑛. 铣车复合加工中心双驱进给系统建模及仿真分析[D]. 兰州: 兰州理工大学, 2015. [27]范维. 双驱进给系统的动力学建模与同步控制技术研究[D].武汉理工大学,2018. [28]毛尔东. 基于摩擦补偿的交叉耦合同步控制技术研究[D].武汉理工大学,2018. [29]Tao P Y , Yang G , Sun Y C , et al. Product-of-exponential (POE) model for kinematic calibration of robots with joint compliance[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. AIM, Taiwan: IEEE, 2012: 496-501. [30]Fu G , Fu J , Xu Y , et al. Product of exponential model for geometric error integration of multi-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9): 1653-1667. [31]Cheng Q , Sun B , Liu Z , et al. Key geometric error extraction of machine tool based on extended Fourier amplitude sensitivity test method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 3369-3385. [32]Fu G , Fu J , Xu Y , et al. Accuracy enhancement of five-axis machine tool based on differential motion matrix: Geometric error modeling, identification and compensation[J]. International Journal of Machine Tools & Manufacture, 2015, 81(1): 289-305. [33]Chen J , Lin S , He B . Geometric error compensation for multi-axis CNC machines based on differential transformation[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(1-4): 635-642. [34]Deng F , Tang Q , Li X , et al. Study on mapping rules and compensation methods of cutting-force-induced errors and process machining precision in gear hobbing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9-12): 3859–3871. [35]Zhou B , Wang S , Fang C , et al. Geometric error modeling and compensation for five-axis CNC gear profile grinding machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(3): 1-14. [36]李响, 袁军堂, 汪振华. 卧式加工中心双驱Z轴装配体几何误差分析[J]. 哈尔滨工业大学学报, 2021, 53(7): 10. [37]李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报, 2017, 53(7): 113-128. [38]Wu Q . Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation[J]. International Journal of Machine Tools & Manufacture: Design, research and application, 2018, 124: 80-98. [39]Tian W , Gao W , Zhang D , et al. A general approach for error modeling of machine tools[J]. International Journal of Machine Tools and Manufacture, 2014, 79(4): 17-23. [40]朱国文. 数控机床双丝杠驱动进给系统设计与优化研究[D]. 浙江: 浙江大学, 2017. [41]Liang R , Wang Z , Chen W , et al. Accuracy improvement for RLLLR five-axis machine tools: A posture and position compensation method for geometric errors[J]. Journal of manufacturing processes, 2021(Nov.):71. [42]李晴朝. 五轴数控机床空间误差检测,补偿与动态误差控制方法研究[D]. 成都: 电子科技大学, 2021. [43]拓占宇, 黄奕乔, 沈牧文, 等. 基于3次样条插值的数控机床几何与热复合定位误差建模[J]. 上海交通大学学报, 2016, 50(5): 668-672. [44]张恩忠. 多轴精密数控机床误差测量、综合建模及补偿技术的研究[D]. 吉林: 吉林大学, 2017. [45]邓勇. 偏心驱动进给系统的定位误差分析及补偿实验[D]. 武汉: 武汉理工大学, 2018. [46]刘琪, 卢红, 张新宝, 等. 龙门移动式双驱进给系统定位误差补偿方法[J]. 华中科技大学学报(自然科学版), 2021, 49(12): 22-27. [47]朱嘉, 李醒飞, 谭文斌, 等. 基于激光干涉仪的测量机几何误差检定技术[J]. 机械工程学报, 2010(10): 25-30. [48]李圣怡, 戴一帆, 尹自强, 等. 精密和超精密机床精度建模技术[M]. 长沙: 国防科技大学出版社, 2007. [49]刘宏伟, 向华, 杨锐著. 数控机床误差补偿技术研究[M]. 武汉: 华中科技大学出版社, 2018. [50]Hongyao, Shen, and, et al. On-line Asynchronous Compensation Methods for static/quasi-static error implemented on CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2012, 60(1): 14-26. [51]Jie Li , Bin Mei , Chaolin Shuai , et al. A volumetric positioning error compensation method for five-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3979-3989. [52]Cui G , Lu Y , Li J , Gao D , et al. Geometric error compensation software system for CNC machine tools based on NC program reconstructing[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(1-4): 169–180. [53]Givi M , Mayer J R R . Volumetric error formulation and mismatch test for five-axis CNC machine compensation using differential kinematics and ephemeral G-code[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(9-12): 1645-1653. [54]A S Z , A G D , B S Q , et al. Integrated geometric error modeling, identification and compensation of CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2012, 52( 1): 24-29. [55]李自汉, 杨建国, 张毅, 等. 基于自适应分段与动态修正的机床定位误差补偿[J]. 上海交通大学学报, 2014, 48(01): 27-32. [56]Zihan , Feng , Wenlong , et al. An investigation on modeling and compensation of synthetic geometric errors on large machine tools based on moving least squares method[J]. Proceedings of the Institution of Mechanical Engineers, Part B Journal of engineering manufacture, 2018, 232(3): 412-427. [57]Shi H, Zhang D, Yang J, et al. Experiment-based thermal error modeling method for dual ball screw feed system of precision machine tool[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(9-12):1693-1705. [58]Shirvani H , Kalbasi Z , Jason Q C ,et al. Dynamic compliance attenuation in ball screw drives through model-based active damping of multiple vibration modes[J]. CIRP Annals - Manufacturing Technology, 2022, 71(1): 373-376. [59]Haojin Yang , Zihao Wang , Tao Zhang , et al. A review on vibration analysis and control of machine tool feed drive systems[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 503-525. [60]李福华. 滚珠丝杠进给系统动力学建模、参数辨识与动态误差补偿[D]. 北京: 清华大学, 2018. [61]Zhang J , Zhang H , Du C , et al. Research on the dynamics of ball screw feed system with high acceleration[J]. International Journal of Machine Tools & Manufacture, 2016, 111: 9-16. [62]Zhang H , Zhang J , Liu H , et al. Dynamic modeling and analysis of the high-speed ball screw feed system[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2014, 229(5): 870-877. [63]Wang W , Zhou Y , Wang H , et al. Vibration analysis of a coupled feed system with nonlinear kinematic joints[J]. Mechanism and Machine Theory, 2019, 134: 562-581. [64]Chen Y , Tang W . Dynamic contact stiffness analysis of a double-nut ball screw based on a quasi-static method[J]. Mechanism & Machine Theory, 2014, 73: 76-90. [65]朱坚民, 张统超, 李孝茹. 基于结合部刚度特性的滚珠丝杠进给系统动态特性分析[J]. 机械工程学报, 2015, 51(17): 72-82. [66]蒋书运, 祝书龙. 带滚珠丝杠副的直线导轨结合部动态刚度特性[J]. 机械工程学报, 2010, 46(01): 92-99. [67]Villegas F J , Flores G M , Hecker R L , et al. Modeling and vibration mode analysis of a ball screw drive[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1-4) : 257-265.. [68]戴新泽, 胡小秋, 周义成. 双驱进给系统动态特性建模研究[J]. 机械制造与自动化, 2019, 48(05): 85-87+109. [69]Zhang W , X Zhang , Zhang J , et al. Analysis of Lead Screw Pre-Stretching Influences on the Natural Frequency of Ball Screw Feed System[J]. Precision Engineering, 2019(57): 30-44. [70]Yi Guang Shi , Hui Xiao , Jun Ao Zhang , et al. The Analysis of Influence Factors about Dynamic Characteristics of a Ball Screw Feed Drive System[J]. Applied Mechanics and Materials, 2015, 4211(799-800): 576-580. [71]Feng G H , Pan Y L . Investigation of ball screw preload variation based on dynamic modeling of a preload adjustable feed-drive system and spectrum analysis of ball-nuts sensed vibration signals[J]. International Journal of Machine Tools & Manufacture, 2012, 52(1): 85-96. [72]Huang T , Kang Y , Du S , et al. A survey of modeling and control in ball screw feed-drive system[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(5-6): 2923-2946. [73]Andolfatto L, Lavernhe S, Mayer J R R. Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool[J]. International Journal of Machine Tools and Manufacture, 2011, 51(10-11): 787-796. [74]WANG Renche , ZHAO Tong , YE Peiqing , et al. Three-dimensional Modeling for Predicting the Vibration Modes of Twin Ball Screw Driving Table[J]. Chinese Journal of Mechanical Engineering, 2014, 27(01): 211-218. [75]何王勇. 数控机床双轴同步控制技术研究[D]. 武汉: 华中科技大学, 2011. [76]郭崇嵩. 铣车复合加工中心双驱进给系统静动态特性分析[D]. 兰州: 兰州理工大学, 2012. [77]Zhou Y , Peng F , Wang G . A study on the dynamic characteristics of the drive at center of gravity (DCG) feed drives[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(1-4): 325-336. [78]Duan M, Lu H, Zhang X, et al. Dynamic modeling and experimental research on position-dependent behavior of twin ball screw feed system[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(11-12): 3693-3703. [79]李杰, 谢福贵, 刘辛军, 等. 机电-刚柔耦合特性作用下线性进给系统动力学分析[J]. 机械工程学报, 2017, 53(17): 60-69. [80]Sorensen B J , O'Sullivan D , Aaen C . Synchronization of multiaxis motion control over real-time networks[J]. Analog Dialogue, 2018(5-7): 1243-1249. [81]M Luces , J K Mills , B Benhabib . A Review of Redundant Parallel Kinematic Mechanisms[J]. Journal of Intelligent and Robotic Systems, 2017, 86(2): 175–198. [82]J Wu , Z Xiong , H Ding . Integral design of contour error model and control for biaxial system[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 159–169. [83]梅荣军. 高速高精密双轴同步控制研究[D]. 合肥: 中国科学技术大学, 2014. [84]Chen C S , Hu N T . Model Reference Adaptive Control and Fuzzy Neural Network Synchronous Motion Compensator for Gantry Robots[J]. Energies, 2021, 15(1): 1-17. [85]Niu Feng , Sun Kejia , Huang Shaopo , et al. A Review on Multi-motor Synchronous Control Methods[J]. IEEE Transactions on Transportation Electrification, 2022: 1-13. [86]Ramirez J P , Garcia E , Alvarez J . Master-slave synchronization via dynamic control[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 80(Jan.):104977.1-104977.13. [87]Sakata K , Fujimoto H . Master-Slave Synchronous Position Control for Precision Stages Based on Multirate Control and Dead-time Compensation[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2009: 263-268. [88]Cheng Y , Liang T , Zhao W . Non-synchronous error and modeling of dual drive system in gantry-type machine tools with travelling bridge[J]. Journal of Mechanical Engineering, 2013, 49(13): 174-182. [89]Valenzuela M A, Lorenz R D . Electronic line-shafting control for paper machine drives[J]. IEEE Transactions on Industry Applications, 2001, 37(1): 158-164. [90]Perez-Pinal , Nunez C , Alvarez R , et al. Comparison of multi-motor synchronization techniques[C]. Industrial Electronics Society, 2004. IECON 2004. Conference of IEEE. IEEE, 2004, 2: 1670-1675. [91]Li Y , Zhao W , Yao C , et al. Research on dual-driving synchronous control system modeling of gantry-type machine tools with traveling bridge[C]. IEEE International Symposium on Assembly & Manufacturing. IEEE, 2011: 1-6. [92]Yi T S , Chen C S , Lee A C . A novel cross-coupling control design for Bi-axis motion[J]. International Journal of Machine Tools and Manufacture, 2002(14):1539-1548. [93]Zhang C , Chen Y . Adaptive synchronization tracking control of dual-driving feed system for gantry-type machine tool[C]. Conference of the IEEE Industrial Electronics Society. 2017, 2: 2961-2966. [94]Hsieh M F , Yao W S , Chiang C R . Modeling and synchronous control of a single-axis stage driven by dual mechanically-coupled parallel ball screws[J]. International Journal of Advanced Manufacturing Technology, 2007, 34(9-10): 933-943. [95]C Li , C Li , Z Chen , et al. Adaptive thrust allocation based synchronization control of a dual drive gantry stage[J]. Mechatronics, 2018, 54: 68-77. [96]K Ishizaki , B Sencer , E Shamoto . Cross Coupling Controller for Accurate Motion Synchronization of Dual Servo Systems[J]. International journal of automation technology, 2013, 7(5): 514-522. [97]J H Byun , M S Choi . A method of synchronous control system for dual parallel motion stages[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 883-889. [98]Zhitai Liu , Weiyang Lin , Xinghu Yu . Approximation-Free Robust Synchronization Control for Dual-Linear-Motors-Driven Systems With Uncertainties and Disturbances[J]. IEEE Transactions on Industrial Electronics. 2022, 69(10): 10500-10509. [99]Brecher C , Eer B , Falker J , et al. Modelling of ball screw drives rolling element contact characteristics[J]. CIRP Annals, 2018, 67(1): 409-412. [100]Merghache S M , Hamdi A . Numerical evaluation of geometrical errors of three-axes CNC machine tool due to cutting forces—case: milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(5-6): 1-23. [101]常浩. 数控机床单轴几何误差溯源与补偿[D]. 武汉: 华中科技大学, 2019. [102]ISO 230-1, Test code for machine tools—part 1: geometric accuracy of machines operating under no-load or quasi-static conditions[S]. 2012. [103]Lyu D , Liu Q , Liu H , et al. Dynamic error of CNC machine tools: a state-of-the-art review[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(5-6): 1-23. [104]黄俊. 滚动支撑双驱直线进给系统动热耦合特性分析、试验及结构优化设计[D]. 南京: 南京理工大学, 2017. [105]范开国. 数控机床多误差元素综合补偿及应用[D]. 上海: 上海交通大学, 2012. [106]成谦. 双驱进给系统轴向刚度辨识与进给误差补偿策略研究[D]. 武汉: 武汉理工大学, 2021. [107]徐延海, 贾丽萍, 张建武. 基于接触面几何的接触问题解法[J]. 机械工程学报, 2002(10): 131-134. [108]冯虎田. 滚珠丝杠副动力学与设计基础[M]. 北京: 机械工业出版社, 2015. [109]Lei Z , Taiyong W , Songling T ,et al. Analytical Modeling of a Ball Screw Feed Drive for Vibration Prediction of Feeding Carriage of a Spindle[J].Mathematical Problems in Engineering, 2016:1-8. [110]吕盾,张佳辉,王大伟,成群林,赵万华,卢秉恒.国产数控机床动态精度技术现状与对策[J].航空制造技术,2022,65(06):22-33. [111]Kamalzadeh A , Gordon D J , Erkorkmaz K. Robust compensation of elastic deformations in ball screw drives[J]. International Journal of Machine Tools and Manufacture, 2010, 50(6): 559-574. [112]辛格雷苏 S 拉奥. 机械振动(第五版)[M]. 北京: 清华大学出版社, 2016. [113]PRITSCHOW G , CROON N . Ball screw drives with enhanced bandwidth by modification of the axial bearing[J]. CIRP Annals - Manufacturing Technology, 2013, 62(1): 383-386. [114]廖伯瑜, 周新民, 尹志宏. 现代机械动力学及其工程应用[M]. 北京: 机械工业出版社, 2004. [115]杨清宇, 马训鸣, 朱洪艳. 现代控制理论[M]. 西安: 西安交通大学出版社, 2020. [116]李自汉. 数控机床关键误差识别、建模及实时补偿应用研究[D]. 上海: 上海交通大学, 2016. [117]Lu H , Cheng Q , Zhang X ,et al. A Novel Geometric Error Compensation Method for Gantry-Moving CNC Machine Regarding Dominant Errors[J].Processes, 2020, 8(8):906. [118]GB T 17421.1, 机床检验通则[S]. [119] 基恩士. 激光干涉仪使用说明书[M/CD]. 日本: 2017. [120]任露泉. 试验优化设计与分析[M]. 北京: 高等教育出版社, 2003. [121]盛骤, 谢式千, 潘承毅. 概率论与数理统计 第四版[M]. 北京: 高等教育出版社, 2008. [122]任志斌. 交流伺服控制系统[M]. 北京: 机械工业出版社, 2018. [123]周勇. 高速进给驱动系统动态特性分析及其运动控制研究[D]. 武汉: 华中科技大学, 2008. [124]蔡辉. 基于响应的机床切削自激励与动力学参数识别方法研究[D]. 武汉: 华中科技大学, 2015. [125]赵玉成, 殷祥超, 赵慧明, 李冲, 杨卫明. 结构模态分析与参数辨识[M]. 江苏: 中国矿业大学出版社, 2017. [126]Xing Liu , Xinyong Mao , et al. Method for identifying feed-drive system dynamic properties using a motor current[J]. International Journal of Machine Tools & Manufacture, 2016, 110: 92–99. [127]Liu Y F , Li J , Zhang Z M , et al. Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system[J]. Mechanical Sciences, 2015, 6(1): 15-28. [128]Yamamoto T , Chen G , Takami I . Robust control design for ball screw system focusing on the friction model[J]. International Journal of Model Identification Control, 2016, 26(3): 207. [129]Zhou H , Ding WF , Li Z , et al. Predicting the grinding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2019, 233(4): 1157–1167. [130]倍福自动化公司. AX5000 digital compact servo drives[EB/OL]. (2020)[2022-9-13]. https://www.beckhoff.com.cn/zh-cn/. [131]Wang W , Zhang Y , Yang J , et al. Geometric and thermal error compensation for CNC milling machines based on Newton interpolation method[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996, 2013, 227(4): 771-778. [132]Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey Wolf Optimizer: A Review of Recent Variants and Applications. Neural Co Symmetry mput. Appl. 2018, 30, 413–435. [133]Mirjalili, Seyedali, S. M. Mirjalili, A. Lewis. "Grey Wolf Optimizer." Advances in Engineering Software 2014;69(3):46–61. [134]Abid, S.; El-Rifaie, A.M.; Elshahed, M.; Ginidi, A.R.; Shaheen, A.M.; Moustafa, G.; Tolba, M.A. Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems. Mathematics 2023, 11, 1796. [135]倍福自动化公司. TwinCAT 3 运动控制教程 V1.15[EB/OL]. (2019)[2022-9-13]. https://www.beckhoff.com.cn/zh-cn/. [136]倍福自动化公司. TwinCAT NC PTP实用教程说明书[EB/OL]. (2008)[2022-9-13]. https://www.beckhoff.com.cn/zh-cn/. [137]Gao X , Guo Y , Hanson D A , et al. Thermal Error Prediction of Ball Screws Based on PSO-LSTM[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116: 1721-1735. [138]Huang N , Jin Y , Bi Q , et al. Integrated post-processor for 5-axis machine tools with geometric errors compensation[J]. International Journal of Machine Tools & Manufacture, 2015, 94:65-73. [139]Wu C , Fan J , Wang Q , et al. Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation[J]. International Journal of Machine Tools & Manufacture, 2017. [140]ISO 230-2, Test code for machine tools—part 2: determination of accuracy and repeatability of positioning of numerically controlled axes[S]. 2014.
﹀
|
中图分类号: |
TG659
|
条码号: |
002000074725
|
馆藏号: |
TD10060747
|
馆藏位置: |
403
|
备注: |
403-西院分馆博硕论文库;203-余家头分馆博硕论文库
|