- 无标题文档
查看论文信息

中文题名:

 CuCrO_2/TiO_2复合光催化剂的制备与光催化性能研究    

姓名:

 常海梅    

学号:

 1049721200378    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 玻璃与纳米功能材料    

第一导师姓名:

 赵修建    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-05-21    

答辩日期:

 2015-05-21    

中文关键词:

 CuCrO_2 ; 纳米晶 ; TiO_2 ; 纳米棒 ; 光催化    

中文摘要:

光催化技术是一种新兴的实用型技术,它可以利用太阳光照完成有机物质的降解和有毒物质的去毒处理等过程,是一种兼具环保与节能意义的绿色环境处理技术。TiO2因其发展最早、效果最好、具有良好的化学稳定性和长期稳定性等优势成为现在催化剂工业上的翘楚,但其受到本身禁带宽度较大和量子效率较低的限制,催化效率有待进一步提高。因此研究TiO2 的改性来提高其光催化效率具有非常重要的研究价值与实际意义。

本文试图通过半导体复合以提高光催化剂的光催化性能,旨在利用半导体间的p-n异质结结构来引导p,n型半导体中光生电子和空穴的流向,提高其电子和空穴的分离效率,进而提高量子效率,最终使TiO2的光催化性能得到大幅度增强。采用水热法分别制备粒径较小的CuCrO2纳米晶和金红石相TiO2纳米棒阵列薄膜,优化了制备TiO2纳米棒阵列薄膜的工艺条件。分别利用旋涂法和浸渍法制备出一系列CuCrO2/TiO2复合光催化剂,采用XRD,SEM,TEM,XPS,PL,光电流等几种方法对催化剂进行表征,考察了在紫外光照射下光催化降解亚甲基蓝水溶液的性能。研究结果表明:利用CuCrO2纳米晶对TiO2进行改性可以提高TiO2的光催化效率,CuCrO2纳米晶的负载量及热处理工艺等因素都对光催化性能产生重要影响。其中,以0.50g/L的CuCrO2纳米晶悬浮液在5000r/min的转速下旋涂20s,并重复旋涂5次得到的样品具有最好的光催化性能,其催化效率和反应速率常数分别为85.3%和0.236h-1,较纯TiO2纳米棒阵列薄膜光催化参数分别提高14.3%和38.8%。采用浸渍法制备的最佳参数为0.50g/L浓度下浸渍32h,其效率和速率比纯TiO2分别提高10%和27%。综合分析认为CuCrO2/TiO2复合光催化剂光催化性能的提高来源于二者间形成的p-n异质结结构。其机理是在p-n结内建反向电场的作用下,引导了电子和空穴分别向TiO2的导带和CuCrO2的价带转移,使电子和空穴得到了更为有效的分离。

本文研究证实通过复合CuCrO2半导体形成的p-n异质结对TiO2进行改性是一种有效提高光催化活性的方法。通过进一步研究,有望使光催化性能得到更大幅度的提高。这种p-n异质结结构光催化剂的研究和开发将对未来高效光催化剂的制备和应用起到指导作用。

参考文献:

[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.

[2] Frank S. N, Bard A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powders [J]. J. Am. Chem. Soc, 1977, 99(1): 303-308.

[3] 张悦伟.异质结构复合制备二氧化钛基光催化剂及其改性剂机制研究[D].杭州:浙江大学,2013.

[4] 刘阳. 复合纳米光催化材料制备及其光催化性能研究[D].杭州:浙江理工大学,2010.

[5] Xie Juan, Wang Hu, Duan Ming. Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties[J]. Acta Phys. Chim. Sin, 2011, 27(1): 193-198.

[6] Yuan Yu, Liying Zhang, Jian Wang, et al. Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation[J]. Nanoscale Research Letters, 2012, 7:347.

[7] M. Vaseema, A. Umar a, Y.B. Hahna, et al. Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies[J]. Catalysis Communications, 2008, 10:11-16.

[8] By Di Chen, Jinhua Ye. Hierarchical WO3 Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties [J]. Adv. Funct. Mater, 2008, 18: 1922-1928.

[9] Mutong Niu, Feng Huang, Lifeng Cui et al. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/Fe2O3 Semiconductor Nanoheterostructures [J]. Acs nano, 2010, 4(20): 681-688.

[10] Ningzhong Bao, Liming Shen, Tsuyoshi Takata, et al. Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Ef?cient Photocatalytic Hydrogen Production under Visible Light [J]. Chem. Mater, 2008, 20:110-117.

[11] Ryoko Konta, Tatsuya Ishii, Hideki Kato, et al.. Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation [J]. J. Phys. Chem. B, 2004, 108:8992-8995.

[12] Kazuhito Hashimoto, Hiroshi Irie, Akira Fujishima. TiO2 Photocatalysis: A Historical Overview and Future Prospects [J]. Jpn. J. Appl. Phys, 2005, 44(12):8269-8285.

[13] Amy L. Linsebigler, Guangquan Lu, John T. Yates, Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J]. Chem. Rev, 1995, 95: 735-758.

[14] S. Girish Kumar, L. Gomathi Devi. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics[J]. J. Phys. Chem. A, 2011, 115:13211-13241.

[15] Tias Paul, Penney L. Miller, Timothy J. Strathmann. Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents [J]. Environ. Sci. Technol, 2007, 41: 4720-4727.

[16] K.Ko?í, L.Obalová, L.Matějová, et al. Effect of TiO2 particle size on the photocatalytic reduction of CO2 [J]. Applied Catalysis B: Environmental, 2009, 89:494-502.

[17] Nattaya Comsup, Joongjai Panpranot, Piyasan Praserthdam. Effect of TiO2 Crystallite Size on the Activity of CO Oxidation[J]. Catal Lett, 2009, 133:76-83.

[18] Jinghuan Zhang, Xin Xiao, Junmin Nan. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure [J]. J. Hazard. Mater, 2010, 176:617-622.

[19] Nianqiang Wu, Jin Wang, De Nyago Tafen, et al. Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts [J]. J.Am.Chem.Soc, 2010, 132:6679-6685.

[20] Xudong Wang, Zhaodong Li, Jian Shi, et al. One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts [J]. Chem. Rev, 2014:9346-9378.

[21] Chien-Cheng Tsai, Hsisheng Teng. Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments [J]. Chem. Mater, 2006, 18:367-373.

[22] By Jincheng Liu , Hongwei Bai , Yinjie Wang , et al. Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications [J]. Adv. Funct. Mater, 2010, 20:4175-4181.

[23] Wenxi Guo, Fang Zhang, Changjian Lin, et al. Direct Growth of TiO2 Nanosheet Arrays on Carbon Fibers for Highly Ef?cient Photocatalytic Degradation of Methyl Orange [J]. Adv. Mater,2012:1-4.

[24] Ming Xu, Peimei Da, Haoyu Wu, et al. Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion [J]. Nano Lett, 2012, 12:1503-150.

[25]刘守新,刘鸿.光催化及光电催化基础与应用[M]. 北京:化学工业出版社, 2006:80-84.

[26] Qiliang Jin, Takuro Ikeda, Musashi Fujishima, et al. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst [J]. Chem. Commun, 2011, 47:8814–8816.

[27] 王荣荣.溶胶-凝胶法制备非金属离子掺杂TiO2/云母的光催化性能的研究[D].合肥:合肥工业大学, 2011.

[28] Bin Liu, Hao Ming Chen, Chong Liu, et al. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential [J]. J. Am. Chem. Soc, 2013, 135:9995-9998.

[29] Chin Jung Lin, Ya Hsuan Liou, Yichi Zhang, et al. Mesoporous Fe-doped TiO2 sub-microspheres with enhanced photocatalytic activity under visible light illumination [J]. Appl. Catal. B: Enviro, 2012:175-181.

[30] R.C. da Silva, E. Alves, M.M. Cruz. Conductivity behaviour of Cr implanted TiO2 [J]. Nucl. Instr. and Meth. in Phys. Res. B, 2002, 191 :158-162.

[31] Jeffrey C. S. Wu, Chih-Hsien Chen. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method [J]. J. Photoch. Photobio A: Chem, 2004, 163: 509-515.

[32] Yaan Cao, Wensheng Yang, Weifeng Zhang, et al. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate ?lms prepared by plasma-enhanced chemical vapor deposition [J]. New. J. Chem, 2004, 28:218-222 .

[33] Min Sik Park, S. K. Kwon, B. I. Min. Electronic structures of doped anatase TiO2:Ti1-xMxO2 (M=Co, Mn, Fe, Ni) [J]. Phy. Rev. B, 2002, 65:1-4.

[34] Dana Dvoranováa, Vlasta Brezováa, Milan Mazúra, et al. Investigations of metal-doped titanium dioxide photocatalysts [J]. Appl. Cata. B: Env, 2002,137:91-105.

[35] 钟雪春.过渡金属掺杂TiO2的制备及其光催化性质的研究[D].广州:广东工业大学,2011.

[36] Nick Serpone, Darren Lawless. Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations [J]. Langmuir, 1994,10: 643-652.

[37] Yeongsoo Choi. Fabrication and characterization of C-doped anatase TiO2 photocatalysts [J]. J. Ma.Sci,2004,39:1837-1839.

[38] Kazumoto Nishijima, Bunsho Ohtani, Xiaoli Yan, et al. Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts [J]. Chem. Phys, 2007, 339: 64-72.

[39]Yoshitaka Nakano, Takeshi Morikawa, Takeshi Ohwaki, et al. Origin of visible-light sensitivity in N-doped TiO2 films [J]. Chem. Phys, 2007, 339 :20-26.

[40] Jimmy C. Yu, Jiaguo Yu, Wingkei Ho, et al. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders [J]. Chem. Mater, 2002, 14:3808-3816.

[41] S. Anandan, K. Kathiravan, V. Murugesan, et al. Anionic (IO3-) non-metal doped TiO2 nanoparticles for the photocatalytic degradation of hazardous pollutant in water [J]. Catal. Commun, 2009, 10:1014-1019.

[42] Lu-Lu Long, Ai-Yong Zhang, Jun Yang, et al. A Green Approach for Preparing Doped TiO2 Single Crystals [J]. ACS Appl. Mater. Interf, 2014, 6:16712-16720.

[43] Zaleska, Adriana. Doped-TiO2: A review [J]. Recent Patents on Eng, 2008, 2(3):157-164.

[44] M. Bellardita, M. Addamo, A. Di Paola, et al. Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films [J]. Chem. Phy, 2007, 339: 94-103.

[45] Astri Bj?rnetun Haugen, Izumi Kumakiri, Christian Simon, et al. TiO2, TiO2/Ag and TiO2/Au photocatalysts prepared by spray pyrolysis [J]. J. Eur. Cream. Soc, 2011, 31:291-298.

[46] Vaidyanathan Subramanian, Eduardo E. Wolf, Prashant V. Kamat. Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2-Au Composite Nanoparticles [J]. Langmuir, 2003, 19:469-474.

[47] Sun B, Vorontsov A. V, Smirniotis P G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation [J]. Langmuir, 2003, 19(8):3151-3156.

[48] Subramanian V, Wolf E.E,Kamat E V. Catalysis with TiO2/Gold nanocomposites.Effect of metal particle size on the fermi level equilibration [J]. J.Am.Chem.Soc, 2004,126(1 5):4943-4950.

[49] 梅长松,钟顺和.复合半导体负载金属材料光催化性能研究[J].无机化学学报,2005,12:1809-1825.

[50] 姜丽娜.有机物及金属掺杂对二氧化钛形貌及光催化性能的影响.济南:山东轻工业学院,2010.

[51] Jiang D, Xu Y, Wu D. Visible-light responsive dye-modified TiO2 photocatalyst [J]. Solid State Chem, 2008,181(3):593-602.

[52] Zhao X, Li Z. W, Chen Y, et a1. Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation [J].Appl. Surf. Sci, 2008, 254(6):1825-1829.

[53] Liu G. M, Zhao J. C, Horikoshi S. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: all experimental and theoretical examination [J]. J. Mol.Catal.A:Chem, 2000,1 53(1-2):221-229.

[54] 杜雪岩,王峭,续京,等.曙红,叶绿素铜三钠共敏TiO2纳米颗粒的光催化性能[J].材料导报,2014,28(1):46-50.

[55] Huanli Wang, Lisha Zhang, Zhigang Chen, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J]. Chem. Soc. Rev, 2014,43:5234-5244.

[56] 吴欢文,张宁,钟金莲,等.p-n复合半导体光催化剂研究进展[J].化工进展,2007, 26(12):1669-1697.

[57] Debabrata Sarkar, Chandan. K. Ghosh, S. Mukherjee, et al. Three Dimensional Ag2O/TiO2 Type-II (p-n) Nanoheterojunctions for Superior Photocatalytic Activity [J]. ACS Appl. Mater. Inter, 2013, 5:331-337.

[58]Wenzhong Wang, Xiangwei Huang, Shuang Wu, et al. Preparation of p-n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity [J]. Appl. Cata. B: Environmental, 2013, 134-135:293-301.

[59] Qing Chi Xu, Diana V. Wellia, Yun Hau Ng, et al, Timothy Thatt Yang Tan. Synthesis of Porous and Visible-Light Absorbing Bi2WO6/TiO2 Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances [J]. J. Phys. Chem. C, 2011, 115:7419-7428.

[60] M.A. Ahmed. Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol–gel method for photodegradation of methylene blue dye [J]. J.Photoch.Photobio. A: Chemistry, 2012, 238: 63-70.

[61] Dongfang Zhang. Synergetic effects of Cu2O photocatalyst with titania and enhanced photoactivity under visible irradiation [J]. Acta Chimica Slovaca, 2013, 6(1):141-149.

[62] Hua Wang, Yusong Bai, Hao Zhang, et al. CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes [J]. J. Phys. Chem. C, 2010, 114:16451-16455.

[63] 成英之,张渊明,唐渝.WO3-TiO2薄膜型复合光催化剂的制备和性能[J].催化学报, 2001, 22(2): 203-208.

[64] Yi Ma, Xiuli Wang, Yushuai Jia, et al. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations [J]. Chem. Rev, 2014, 114:9987-10043.

[65] S. Malato, P. Fernández-Ibá?ez, M. I. Maldonado,et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends [J]. Catalysis Today, 2009, 147:1-59.

[66]Timothy.N. Obee, Robert T. Brown. TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene [J]. Environ. Sci. Techno,1995, 29:1223-1231.

[67] 吴伟志.幕墙自洁净玻璃的特点与应用[J].玻璃专栏,2008:28-30.

[68] 田守卫.负载纳米TiO2薄膜的自清洁陶瓷的制备及性能研究[D].成都:四川大学,2007.

[69] 周曙,方晓东,邓赞红,等.水热法制备铜铁矿型氧化物材料[J].化学进展,2010,22(2/3):352-357.

[70]邓赞红,董伟伟,陶汝华,等.p型铜铁矿结构氧化物材料研究进展[J].材料导报,2006,20(3):37-40.

[71] Isaac Herraiz-Cardona, Francisco Fabregat-Santiago, Adèle Renaud, et al. Hole conductivity and acceptor density of p-type CuGaO2 nanoparticles determined by impedance spectroscopy: The effect of Mg doping [J]. Electrochimica Acta,2013, 113:570-574.

[72] O Aktas, K D Truong, T Otani, et al. Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2 [J]. J. Phys. Condens. Matter , 2012,24:1-7.

[73] 李杨超,张铭,董国波,等. CuCr1-xMgxO2(0≤x≤0.09)薄膜的光电性能[J].中国有色金属学报,2010,20(5):888-894.

[74] Hui Dong, Zhaohui Li, Ximing Xu, et al. Visible light-induced photocatalytic activity of delafossite AgMO2 (M=Al,Ga,In) prepared via a hydrothermal method [J]Applied Catalysis B: Environmental,2009, 89:551-556.

[75] G. N. P. Oliveira, A. M. L. Lopes, T. M. Mendon?a, et al. Magnetic hyperfine field at Cr site in AgCrO2 given by Perturbed angular correlations [J]. Hyperfine Interact, 2010, 197:123-128.

[76] Shuxin Ouyang, Haitao Zhang, Dunfang Li, et al. Electronic Structure and Photocatalytic Characterization of a Novel Photocatalyst AgAlO2 [J]. J. Phys. Chem. B, 2006, 110:11677-11682.

[77] Jie Luo, Yow-Jon Lin, Hao-Che Hung, et al. Tuning the formation of p-type defects by peroxidation of CuAlO2 films [J]. J. Appl. Phys, 2013, 114:1-5.

[78] Kawazoe H , Yasukawa M , Hyodo H. P-type electrical conduction in transparent thin films of CuAlO2 [J] . Nature , 1997, 389 (6654) :939

[79] Jonathan W. Lekse, M. Kylee Underwood, James P. Lewis, et al. Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1-xFexO2 (x=0.05, 0.10, 0.15, 0.20) Delafossites [J].J. Phys. Chem. C, 2012, 116:1865-1872.

[80] Shuxin Ouyang, Zhaosheng Li, Zi Ouyang, et al. Correlation of Crystal Structures, Electronic Structures, Photocatalytic Properties in a Series of Ag-based Oxides: AgAlO2, AgCrO2, and Ag2CrO4 [J]. J. Phys. Chem. C, 2008, 112:3134-3141.

[81] Carrie G. Read, Yiseul Park, Kyoung-Shin Choi. Electrochemical Synthesis of p-Type CuFeO2 Electrodes for Use in a Photoelectrochemical Cell [J]. J. Phys. Chem. Lett, 2012, 3:1872 -1876.

[82] S. Saadi, A. Bouguelia, M. Trari. Photocatalytic hydrogen evolution over CuCrO2[J]. Solar Energy,2006, 80:272-280.

[83] N. Koriche, A. Bouguelia, A. Aider, et al. Photocatalytic hydrogen evolution over delafossite CuAlO2 [J]. Int. J. Hydrogen Energy, 2005, 30:693-699.

[84]Larrazábal G O, Mondelli C. CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production [J]. Angew. Chem. Int. Ed, 2013, 125(37): 9954-9957.

[85] W. Ketir, A. Bouguelia, M. Trari. NO3- removal with a new delafossite CuCrO2 photocatalyst [J]. Desalination,2009, 244:144-152.

[86] Dehua Xiong, Zhen Xu, Xianwei Zeng, et al. Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells [J]. J. Mater. Chem,2012, 22:24760-24768.

[87] Zhenyi Zhang, Changlu Shao, Xinghua Li, et al. Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with Enhanced Photocatalytic Activity [J]. ACS Appl. Mater. Interfaces, 2010, 2: 2915-2923.

[88]Bin Liu,Eray S. Aydil. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J]. J.Am.Chem. Soc,2009, 131:3985-3990.

[89] 张毓芳,张正国,方晓明. TiO2一维纳米材料及其纳米结构的合成[J].化学进展,19(4):494-501.

[90] D. W. Pashley. Epitaxy growth mechanisms[J]. Mater. Sci. Tech,1999,15:1-7.

[91] 李兵.高分散、抗烧结、粒径可控Pd/SiO2催化剂的浸渍法制备及其制备机理和催化性能研究[D].厦门:厦门大学,2011.

[92] Tieping Cao, Yuejun Li, Changhua Wang, et al. A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity [J]. Langmuir, 2011, 27:2946-2952.

[93] H.J. Choi, M. Kang. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2 [J]. Int. J. Hydrogen.Energ, 2007, 32:3841-3848.

[94] Yi Ma, Xin Zhou, Quanbao Ma, et al. Photoelectrochemical Properties of CuCrO2: Characterization of Light Absorption and Photocatalytic H2 Production Performance [J]. Catal Lett, 2014, 144:1487-1493.

[95] Liu B, Wen L, Zhang H. TiO2/WO3 Layered Film with Dual-Function of Anti-UV Light and High Photoelectrocatalytic Activity: Facile Preparation and Characterization [J]. J. Ame. Cera. Soc, 2012,95(10):3346-3351.

[96] 阎建辉,刘强,关鲁雄,等. 载铂Sr(Zr1-xYx)O3-δ-TiO2异质结光催化剂模拟太阳光催化产氢[J].化学学报,2008, 66(8): 879-884.

[97] 丁建军.可见光响应型光催化剂的制备、结构和性能研究[D].合肥:中国科学技术大学,2009.

[98] 阎建辉,张丽,朱裔荣,等. NiO(CoO) /N-SrTiO3异质结型复合光催化剂的制备及模拟太阳光催化产氢[J].无机材料学报,2009,24(4):666-670.

[99] Kuaixia Ren, Jie Liu, Jie Liang, et al. Synthesis of the bismuth oxyhalide solid solutions with tunable band gap and photocatalytic activities[J]. Dalton Trans, 2013, 42:9706-9712.

[100] 王东,刘红缨,贺军辉,等.旋涂法制备功能薄膜的研究进展[J].影像科学与光化学,2012,30(2):91-103.

[101] Liu B, Nakata K, Zhao X, et al. Theoreticl Kinetic Analysis of Heterogeneous Photocatalysis: the Effects of Surface Trapping and Bulk Recombination through Defects[J]. J.Phys. Chem. C, 2011,115(32):16037-16042.

[102] Chen Shifu, Zhang Sujuan, Liu Wei, et al. Preparation and activity evaluation of p–njunction photocatalyst NiO/TiO2 [J]. J. Hazard.Mater, 2008, 155:320-326.

[103] Chenghui Han, Zhiyu Li, Jianyi Shen. Photocatalytic degradation of dodecyl-benzene sulfonate over TiO2-Cu2O under visible irradiation[J]. J. Hazard.Mater, 2009, 168:215-219.

[104] J.G. Yu, Y. Su, B. Cheng, et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method[J]. J. Mol. Catal. A: Chem, 2006, 258:104-112.

[105] He He, Chao Liu, Kevin D. Dubois, et al. Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications [J]. Ind. Eng. Chem. Res,2012, 51:11841-11849.

中图分类号:

 O643.36    

馆藏号:

 O643.36/0378/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式