- 无标题文档
查看论文信息

中文题名:

 聚集诱导高效荧光环状硅杂环戊二烯衍生物的合成、表征及其光物理性能的研究     

姓名:

 蔡元婧    

学号:

 10497110040    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080501    

学科名称:

 材料物理与化学    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

获奖论文:

 校优秀博士学位论文    

院系:

 材料科学与工程学院    

专业:

 材料物理与化学    

研究方向:

 有机硅材料    

第一导师姓名:

 张超灿    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-09-19    

答辩日期:

 2014-12-14    

中文关键词:

 

硅杂环戊二烯 ; 环硅氧烷 ; 荧光量子产率 ; 聚集诱导发光 ; 分子堆积排列与相互作用 ; 化学理论计算 ; 硅橡胶 ; 阻尼性能

    

中文摘要:

具有高固态荧光量子产率的合成材料在发光器件能源高效转换方面发挥着重要的作用。分布于硅原子环外的两个化学键的σ*轨道和环内丁二烯π*轨道的相互作用使得硅杂环戊二烯具有σ*-π共轭体系。由于其最低未占轨道(LUMO)的能级较低,因此赋予了硅杂环戊二烯优良的有机光电性能且在发光器件上有非常广阔的应用前景。目前,对于提高硅杂环戊二烯在发光器件中的固态荧光量子产率的研究,国内外更多的是通过对硅杂环戊二烯类化合物在硅原子上或环戊的碳原子上取代基的结构修饰改性、或者对硅杂环戊二烯在2,5位碳原子上的聚合形成聚合物来实现。这些合成反应并不是很简单,反应条件也不总是很温和。相对而言,目前鲜见文献报道将硅杂环戊二烯引入到环硅氧烷中从而合成荧光化合物的研究;对于硅杂环戊二烯中硅原子上的1,1位聚合形成的具有荧光性质的聚硅氧烷的研究也很少;而且人们对固态荧光量子产率大小的机理研究尚不完善。因此,探索不同合成方法、对硅杂环戊二烯的分子结构设计以合成高固态荧光量子产率的新化合物或聚合物是硅杂环戊二烯在实际应用中的关键;深层次地对固态荧光量子产率高低的机理研究具有重要的学术意义和应用价值。

本论文以硅杂环戊二烯荧光团为研究对象,通过分子结构设计,合成了一系列以甲基、苯基作为间隔基团、将不同荧光团(硅芴、1,3-二苯基-9-硅芴、2,3,4,5-四苯基-1-硅杂环戊二烯、铝二喹哪啶)引入环硅氧烷或含硅化合物中形成的高固态荧光量子产率的新的化合物,系统研究了这类硅杂环戊二烯衍生物的合成和分离提纯方法,全面表征了这一系列新化合物的化学结构,探讨了间隔基(甲基、苯基)以及环硅氧烷大小、不同荧光基团对硅杂环戊二烯衍生物的荧光性能的影响,系统研究了该类化合物在四氢呋喃溶液、薄膜、单晶粉末固态下的的紫外吸收、荧光发射、聚集诱导发光、荧光寿命及荧光量子产率,深层次分析了该类化合物的单晶分子堆积排列和分子间相互作用,计算了该类化合物的分子轨道和紫外激发单重态,研究了固态荧光性能的机理,尝试了通过两种硅杂环戊二烯环硅氧烷的开环聚合反应合成1,1位聚合的聚硅杂环戊二烯。研究了环硅氧烷开环反应合成含氨基聚硅氧烷制备硅橡胶的阻尼性能。

本论文的主要研究内容和结果如下:

(1)硅芴环硅氧烷衍生物的合成、表征及其光物理性能的研究。采用共水解反应合成了四种新的含有硅芴荧光团的环硅氧烷衍生物,并对它们进行了结构表征。研究了该环状硅芴衍生物在溶液、薄膜和晶状粉末状态下的紫外吸收和荧光发射的性能。研究表明,这些化合物在溶液中和薄膜状态下紫外吸收峰对应的波长约为278 nm;在溶液中荧光发射谱峰对应波长约355 nm;在晶体粉末固态下的荧光发射光谱的谱峰范围为369-403 nm,并伴有发射强度小的肩峰(488-500 nm)。与溶液相比,这些化合物在薄膜和晶体粉末固态下的荧光发射峰都有明显的红移。这些化合物在溶液中有相似的低荧光量子产率(Φfl= 0.13 - 0.15);但是它们都具有较高的固态的荧光量子产率(Φfl= 0.35 - 0.54)。这些化合物在聚集态下荧光发射强度增加不大(I/I0 =1.5)。在单晶结构中,含有四个硅芴结构单元的环四硅氧烷化合物存在部分重叠的π-π相互作用,其他三个化合物的硅芴单元仅具有CH-π相互作用。理论计算表明,所有化合物的光学允许激发态涉及的跃迁轨道(HOMO-1, LUMO, LUMO+1)均分布在硅芴结构单元上;相较于单个分子化合物,这些化合物的单晶固态的激发态跃迁轨道之间的能级减少;含有四个硅芴结构单元的环四硅氧烷化合物和含有两个硅芴结构单元的环六硅氧烷化合物只有一个光学允许的单重激发态,这可能会与光学禁止激发态发生能量转移从而造成荧光衰减。

(2)2,3,4,5-四苯基硅杂环戊二烯环硅氧烷衍生物的合成、表征及其光物理性能的研究。采用共缩合反应合成了三种新的含有四苯基硅杂环戊二烯荧光团的环硅氧烷衍生物,并对它们的结构进行了表征。研究了该环状四苯基硅杂环戊二烯衍生物在溶液、单晶固态下的紫外吸收和荧光发射的性能。研究表明,这些化合物在溶液中的紫外吸收峰对应的波长为366-375 nm,荧光发射峰对应的波长为490-500 nm;这些化合物在晶体状态下的荧光发射峰对应的波长为505-528 nm。虽然这些化合物在四氢呋喃溶液中具有低的荧光量子产率(Φfl ≈0),但是它们的固态荧光量子产率均很高(Φfl =0.19-0.86)。此外,这些化合物都具有良好的聚集诱导荧光增强的特性(I/I0=60)。在单晶结构中,这些化合物都有弱的分子间CH-π的相互作用;除此之外,间隔基为苯基(Ph2Si-)的2,3,4,5-四苯基硅杂环戊二烯环三硅氧烷还具有分子内CH-π的相互作用。理论化学计算表明,这些化合物的分子跃迁轨道(HOMO-1, LUMO, LUMO+1)均位于四苯基硅杂环戊二烯单元上;间隔基为苯基(Ph2Si-)的2,3,4,5-四苯基硅杂环戊二烯环三硅氧烷的光学跃迁是从基态S0到第二激发态S2,但是间隔基为苯基(Ph2Si-)或甲基(Me2Si-)的2,3,4,5-四苯基硅杂环戊二烯环四硅氧烷的光学跃迁是从基态S0到S4,后者在光学跃迁中发生光学允许激发态与光学禁止激发态(S2、S3)之间的能量转移可能性较大,这可能是后者具有较低的固态荧光量子产率的原因。

(3)硅杂环戊二烯类环四硅氧烷衍生物的合成、表征及其光物理性能的研究。采用共水解和缩合反应合成了三种新的含有硅芴、1,3-二苯基-9-硅芴、2,3,4,5-四苯硅杂环戊二烯荧光团的环四硅氧烷衍生物,并对它们的结构进行了表征。研究了该环四硅氧烷衍生物在溶液、单晶固态下的紫外吸收和荧光发射的性能。研究表明,在四氢呋喃溶液中,硅芴荧光团的紫外吸收峰对应的波长为279和291 nm,荧光发射谱峰对应波长为359 nm;1,3-二苯基-9-硅芴荧光团的紫外吸收峰对应波长为265 nm,荧光发射谱峰对应波长为375 nm;2,3,4,5-四苯基硅杂环戊二烯荧光团的紫外吸收峰对应的波长为367 nm, 荧光发射谱峰对应波长为491 nm。含有硅芴和2,3,4,5-四苯硅杂环戊二烯两种荧光团的环四硅氧烷在溶液和固态下的荧光性能主要来自荧光团2,3,4,5-四苯基硅杂环戊二烯。在溶液中,1,3-二苯基-9-硅芴环四硅氧烷(Φfl = 0.18)比硅芴环四硅氧烷(Φfl = 0.14)的荧光量子产率大,2,3,4,5-四苯硅杂环戊二烯环四硅氧烷(Φfl = 0.01)的荧光量子产率最小。这些化合物都具有很高的固态荧光量子产率(Φfl =0.65-0.78)。1,3-二苯基-9-硅芴环四硅氧烷和硅芴环四硅氧烷没有显著聚集诱导荧光增强现象(I/I0 <2),2,3,4,5-四苯硅杂环戊二烯环四硅氧烷有较明显的荧光增强特性(I/I0≈18)。在单晶结构中,这些化合物都存在π-π和CH-π相互作用。含有硅芴和2,3,4,5-四苯硅杂环戊二烯两种荧光团的环四硅氧烷的π-π和CH-π相互作用只在硅芴单元上,四苯基硅杂环戊二烯单元没有任何π-π或CH-π相互作用;又由于该化合物的紫外吸收峰与荧光发射峰有较大的重叠,所以该化合物能发生有效的无辐射荧光共振能量转移,这与该化合物在溶液和固态下的荧光性能主要来自四苯基硅杂环戊二烯荧光团的实验事实相符。分子轨道与单重激发态的理论化学计算表明,这些化合物的光学跃迁主要是(π-π*)的HOMO-LUMO跃迁;硅芴环四硅氧烷的HOMO和LUMO分布于硅芴单元上,1,3-二苯基-9-硅芴环四硅氧烷的HOMO和LUMO分布于1,3-二苯基-9-硅芴单元上,含有硅芴和2,3,4,5-四苯硅杂环戊二烯两种荧光团的环四硅氧烷的HOMO和LUMO分布于2,3,4,5-四苯基硅杂环戊二烯单元上。

(4)固态荧光量子产率~100%的硅杂环戊二烯类衍生物的合成、表征及其光物理性能的研究。采用共缩合和酸碱中和反应合成了五种新的含有2,3,4,5-四苯硅杂环戊二烯、硅芴、-AlQ2(铝二喹哪啶)荧光团的高固态荧光量子产率的硅杂环戊二烯类衍生物,并对它们的结构进行了表征。研究了该硅杂环戊二烯衍生物在溶液、单晶固态下的紫外吸收和荧光发射的性能。研究表明,间隔基为甲基苯基(PhMeSi-)的2,3,4,5-四苯基硅杂环戊二烯环四硅氧烷的反式异构体和间隔基为甲基(Me2Si-)的2,3,4,5-四苯基硅杂环戊二烯环三硅氧烷具有相似的紫外吸收(366-373 nm)和荧光发射(497-500 nm),它们在溶液中的相对荧光量子产率接近零,但是固态荧光量子产率分别为0.99和0.97(接近100%);这两种化合物都具有较好的聚集诱导发光性能:I/I0 = 94。在晶体结构中,间隔基为甲基苯基(PhMeSi-)或甲基(Me2Si-)的2,3,4,5-四苯基硅杂环戊二烯环硅氧烷没有任何π-π相互作用,只有CH-π相互作用;前者有分子内和分子间的CH-π作用,后者只有分子间的CH-π相互作用;间隔基为甲基苯基(PhMeSi-)的2,3,4,5-四苯基硅杂环戊二烯环四硅氧烷的顺式异构体在晶格中主要是一维堆积排列,其反式异构体和间隔基为甲基(Me2Si-)的2,3,4,5-四苯基硅杂环戊二烯环三硅氧烷在晶格中都是三维网络排列堆积。高斯计算结果显示,间隔基为甲基苯基(PhMeSi-)的2,3,4,5-四苯基硅杂环戊二烯环四硅氧烷的顺式异构体和反式异构体的电子构型没有任何显著的差异,它们的第一单重激发态S1的跃迁是光学禁止的,因此它们的紫外吸收光谱对应的是第二单重激发态S2的跃迁;所有的跃迁分子轨道(HOMO-1,HOMO,LUMO+1)主要分布在2,3,4,5-四苯基硅杂环戊二烯结构单元上。含1,3-二苯基-9-硅芴和-AlQ2的硅杂环戊二烯衍生物、含硅芴和-AlQ2的硅杂环戊二烯衍生物的荧光发射主要来自-AlQ2荧光团(发射峰对应波长461-476 nm)。这两种化合物在THF/H2O的混合溶液中没有聚集诱导发光现象;它们的溶液荧光量子产率为0.31-0.34,固态荧光量子产率高达0.92和0.79。此外,含硅芴和-AlQ2的硅杂环戊二烯衍生物的晶体具有机械研磨变色的特性,该样品经研磨后的荧光发射光谱的谱峰有红移(λem=481nm)。

(5)环硅氧烷的开环聚合及其应用。以硅芴及2,3,4,5-四苯基硅杂环戊二烯环硅氧烷作为单体,通过不同催化剂合成硅杂环戊二烯1,1位聚合的聚硅氧烷。研究表明,采用四甲基氢氧化铵作为催化剂、甲苯为反应溶剂的硅芴环四硅氧烷的开环聚合,反应生成硅芴1,1位聚合的白色不溶沉淀物在室温下几乎不溶解于任何有机溶剂,只能在100°C左右的高温下溶于1,2-二氯苯。研究了以八甲基环四硅氧烷作为单体开环聚合,再与含氨基的硅氧烷共缩聚,然后与环氧小分子侧链接枝改性合成的聚硅氧烷在阻尼减震材料中的应用。由室温粘度(2.5×104 mP•s ~ 8.0×104 mP•s)不同、含氮Si-O链节百分含量相同(5%)的侧链含烷烃或苯环的两种含氮聚硅氧烷与纳米二氧化硅固化形成的硅橡胶具有相似的阻尼特性(最大阻尼系数tanδmax= 0.42,对应阻尼温度Tg= -72℃~ -50℃)。由室温相似粘度(6.5×104 mP•s)、不同含氮Si-O链节百分含量的侧链含烷烃或苯环的两种含氮聚硅氧烷与纳米二氧化硅固化形成的硅橡胶,其阻尼系数和Tg随着硅橡胶中含氮Si-O链节含量增加而增大,且阻尼温度范围变宽;当含氮Si-O链节百分含量为18%时,硅橡胶具有最佳的阻尼性能:tanδmax>0.82。

参考文献:

[1] Terenin A. N., Photonics of dye molecules, Leningrad, Nauka publishing house, 1967, 616 p.

[2] Meister T. G., Electronic spectra of polyatomic molecules, Leningrad, Leningrad State University publishing house, 1969, 206 p.

[3] Sinha H. K., Dogra S. K., Ground and excited state prototropic reactions in 2-(ortho-hyroxyphenyl)benzimidazole, Chemical Physics, 1986, 102: 337-347

[4] Acuna A. U., Amat F., Catalan J., et al. Pulsed liquid lasers from proton transfer in the excited state, Chemical Physics Letters, 1986, 132: 567-569.

[5] Costela A., Amat F., Catalan J., et al. Phenylbenzimidazole proton-transfer laser dyes: Spectral and operational properties, Optics Communications. 1987, 64: 457-460.

[6] Nurmukhametov R. G., Absorption and luminescence of aromatic compounds, Moscow, Khimia publishing house, 1971, 216 p.

[7] McGlnn S. P., Azumi T., Kinoshita M., Molecular spectroscopy of the triplet state, New Jersey, Englewood Cliffs, Prentice Hall, Inc., 1969, 448 p.

[8] Krasovitsky B. M., Bolotin B. M., Organic luminophors, Moscow, Khimia publishing house, 1984, 336 p.

[9] Parker C. A., Photoluminescence of solutions, Amstrdam, Elsevier publishing house, 1968, 510 p.

[10] Murrell J. N., The theory of the electronic spectra of organic molecules, London, Chapman and Hall publishing house, 1971, 328 p.

[11] Barashkov N. N, The Synthesis and Luminescence-spectroscopic Properties of Fluorescent Condensation Polymers, Russian Chemical Reviews. 1985, 54: 690-709.

[12] Sommersall A. C., Guillet J. E. J. Photoluminescence of Synthetic Polymers, Journal of Macromolecular Science, Part C Polymer Reviews, 1975, 13: 135-188.

[13] Oster G., Nishijima Y., fluorescence methods in polymer science, Fortschritte Der Hochpolymeren-Forschung,1964, 3: 313-331.

[14] Phillips D., Polmer Photophysics: Luminescence, energy migration, and molecular motion in synthetic polymers, London, Chapman and Hall publishing house, 1985, 437p.

[15] Guillet J., Polymer photophyscis and photochemistry, Cambridge, Cambridge University Press, 1985.

[16] Winnik M. A., Photophysical and photochemical tools in polymer science: conformation, dynamics, morphology, Netherlands, Dordrecht, NATO Advanced Scientific Institute Series, Series C (mathematical and physical sciences), D. Reidel publishing house, 1986, 182, 642 p.

[17] Rabek J. F., Photochemistry and photophysics, Florida, Boca Rato, CRC Press, 1990, 1, 192 p.

[18] Tsuchida E., Macromolecular Complexes: Dynamic interactions and electronic processes, Weinheim, Wiley-VCH Verlag, 1991, 400 p.

[19] Allen N. S., Photochemistry, London, Royal Society of Chemistry Press, 1988, 19: 459-506.

[20] Allen N. S., Photochemistry, London, Royal Society of Chemistry Press, 1989, 20: 455-503.

[21] Allen N. S., Photochemistry, London, Royal Society of Chemistry Press, 1990, 21: 483-543.

[22] Allen N. S., Edge M., Photochemistry, London, Royal Society of Chemistry Press, 1991, 22: 411-501.

[23] Allen N. S., Edge M., Photochemistry, London, Royal Society of Chemistry Press, 1992, 23: 403-468.

[24] Allen N. S., Photochemistry, London, Royal Society of Chemistry Press, 1993, 24: 403-509.

[25] Cuniberti C., Perico A. Intramolecular diffusion-controlled reactions and polymer dynamics, Progress in Polymer Science, 1984, 10: 271-316.

[26] Anufrieva E. V., Modern Physical methods for polymer research, Moscow, Khimia publishing house, 1982: 77-91.

[27] Bokobza L., Investigation of local dynamics of polymer chains in the bulk by the excimer fluorescence technique, Progress in Polymer Science. 1990, 15: 337-360.

[28] Itagaki H., Horie K., Mita I., Luminescent probe studies of the microstructure and mobility of solid polymers, Progress in Polymer Science. 1990, 15: 361-424.

[29] Braye E. H., Hübel W., Heterocyclic Compounds from Carbonyl Complexes: Pentaphenylphosphole, Chemistry & Industry, 1959, 83:1250-1251.

[30] Braye E. H., Hübel W., Caplier I., New Unsaturated Heterocyclic Systems I, Journal of the American Chemical Society, 1961, 83(21): 4406-4413.

[31] Tamao K., Uchida M., Izumizawa T., et al. Silole derivatives as efficient electron transporting materials, Journal of the American Chemical Society, 1996, 118(47): 11974-11975.

[32] Tamao K., Yamaguchi S., Regio-controlled intramolecular reductive cyclization of diynes, Pure and applied chemistry, 1996, 68(1): 139-144.

[33] Zhan X., Barlow S., Marder S. R., Substituent effects on the electronic structure of siloles, Chemical Communications, 2009(15): 1948-1955.

[34] Yamaguchi S., Tamao K., A Key Role of Orbital Interaction in the Main Group Element-containing π-Electron Systems, Chemistry Letters, 2005, 34(1): 2-7.

[35] Hermanns J., Schmidt B., Five-and six-membered silicon-carbon heterocycles. Part 1. Synthetic methods for the construction of silacycles, Journal of the Chemical Society, Perkin Transactions 1, 1998: 2209-2230.

[36] Hermanns J., Schmidt B., Five-and six-membered silicon-carbon heterocycles. Part 2. Synthetic modifications and applications of silacycles, Journal of the Chemical Society, Perkin Transactions 1, 1999: 81-102.

[37] Dubac J., Laporterie A., Manuel G., Group-14 Metalloles. 1. Synthesis, Organic-Chemistry, and Physicochemical Data, Chemical Reviews, 1990, 90(1): 215-263.

[38] Corey J. Y., Chapter 1 - Siloles: Part 1: Synthesis, Characterization, and Applications, Advances in Organometallic Chemistry, 2011, 59: 1-179.

[39] Smith L. I., Hoehn H. H., The reaction between diphenylketene and aryaetylenes. VI. Mechanism, Journal of the American Chemical Society. 1941, 63: 1184-1187.

[40] Patai S., Rappoport Z., Apeloig Y., The chemistry of organic silicon compounds, New York, Chichester, Wiley, 1989.

[41] Joo W. C., Park Y. C., Kang S. K., et al. Synthesis of 1,1-dichloro-2,3,4,5-tetraphenyl-1-silacyclopenta-2,4-diene and its reaction with alkali metal: evidence for the formation of silylanion, Bulletin of the Korean Chemical Society, 1987, 8(4): 270-272.

[42] Joo W. C., Hong J. H., Choi S. B., Synthesis and reactivity of 1,1-disodio-2,3,4,5-tetraphenyl-1-silacyclopentadiene, Journal of Organometallic Chemistry,1990, 391: 27-36.

[43] Dong Y. Q., Lam J. W. Y., Qin A., et al. Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core, Chemical Physics Letters, 2007, 446(1-3): 124-127.

[44] Zhan X., Risko C., Amy F., et al. Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles: direct measurements and comparison with experimental and theoretical estimates, Journal of the American Chemical Society, 2005, 127(25): 9021-9029.

[45] Zhan X. W., Haldi A., Risko C., et al. Fluorenyl-substituted silole molecules: geometric, electronic, optical, and device properties, Journal of Materials Chemistry, 2008, 18(26): 3157-3166.

[46] Li Z., Dong Y., Mi B., et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials, Journal of Physical Chemistry B, 2005, 109(20): 10061-10066.

[47] Yin S. W., Peng Q., Shuai Z., et al. Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles, Physical Review B, 2006, 73(20): 205409-205405.

[48] Yamaguchi S., Tamao K., Silole-containing σ-and π-conjugated compounds, Journal of the Chemical Society, Dalton Transactions, 1998: 3693-3702.

[49] Yamaguchi S., Tamao K., Cross-coupling reactions in the chemistry of silole-containing π-conjugated oligomers and polymers, Journal of Organometallic Chemistry, 2002, 653: 223-228.

[50] Tamao K., Yamaguchi S., Shiro M., Oligosiloles - First Synthesis Based on a Novel Endo-Endo Mode Intramolecular Reductive Cyclization of Diethynylsilanes, Journal of the American Chemical Society, 1994, 116(26):11715-11722.

[51] Lee J. H., Liu Q. D., Bai D. R., et al. 2,3,4,5-Tetrafunctionalized siloles: Syntheses, structures, luminescence, and electroluminescence, Organometallics, 2004, 23(26): 6205-6213.

[52] Boydston A. J., Pagenkopf B. L., Improving quantum efficiencies of siloles and

silole-derived butadiene chromophores through structural tuning, Angewandte Chemie International Edition, 2004, 43: 6336-6338.

[53] Zhao Z., Liu D., Mahtab F., et al. Synthesis, structure, aggregation-induced emission, self-assembly, and electron mobility of 2,5-bis(triphenylsilylethynyl)-3,4-diphenylsiloles, Chemistry-A European Journal, 2011, 17(21): 5998-6008.

[54] Morra N. A., Pagenkopf B. L., Direct synthesis of 2,5-dihalosiloles, Organic Syntheses, 2008, 85: 53-63.

[55] Boydston A. J., Yin Y., Pagenkopf B. L., Synthesis and electronic properties of donor-acceptor pi-conjugated siloles, Journal of the American Chemical Society, 2004, 126(12): 3724-3725.

[56] Yamaguchi S., Endo T., Uchida M., et al. Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2,5-diaryl-3,4-diphenylsiloles, Chemistry-A European Journal, 2000, 6(9): 1683-1692.

[57] Yamaguchi S., Jin R.-Z., Tamao K., et al. Synthesis of a Series of 1,1‐Difunctionalized Siloles, Organometallics, 1997, 28(38): 2230-2232.

[58] Zhao Z., Guo Y., Jiang T., et al. A fully substituted 3-silolene functions as promising building block for hyperbranched poly(silylenevinylene), Macromolecular Rapid Communications, 2012, 33(12): 1074-1079.

[59] Zhao Z., Chen S., Shen X., et al. Aggregation-induced emission, self-assembly, and electroluminescence of 4,4'-bis(1,2,2-triphenylvinyl)biphenyl, Chemical Communications, 2010, 46(5): 686-688.

[60] Zhao Z. J., Chen S. M., Lam J. W. Y., et al. Steric hindrance, electronic communication, and energy transfer in the photo- and electroluminescence processes of aggregation-induced emission luminogens, Journal of Physical Chemistry C, 2010, 114(17): 7963-7972.

[61] Wrackmeyer B., 1,1-Organoboration of Alkynylsilicon, -germanium, -tin and -lead compounds, Coordination Chemistry Reviews, 1996, 145:125-156.

[62] Wrackmeyer B., Tok O. L., Khan A., et al. 1,1-Ethylboration of di(alkyn-1-yl)silanes with two and three Si-H Functions. New Silacyclopentadienes, Verlag der Zeitschrift für Naturforschung, 2005, 60b: 251-258.

[63] Wrackmeyer B., Bhatti M. H., Ali S., et al. Reactivity of some poly-1-alkynylsilicon and -tin compounds towards triallylborane - routes to novel heterocycles, Journal of Organometallic Chemistry, 2002, 657(1-2): 146-154.

[64] Wrackmeyer B., Milius W., Klimkina E. V., et al. 1-Boraadamantane: reactivity towards di(1-alkynyl)silicon and -tin compounds: first access to 7-metalla-2,5-diboranorbornane derivatives, Chemistry, 2001, 7(4): 775-782.

[65] Wrackmeyer B., Tok O. L., Shahid K. et al, Novel sila-2,4-cyclopentadienes via 1,1-ethylboration of Si- and C functionalised di(alkyn-1-yl)silanes, Inorganica Chimica Acta, 2004, 357(4): 1103-1110.

[66] Khan E., Bayer S., Wrackmeyer B. Z., Syntheses of 1,1-organo-substituted silole derivatives. 1,1-ethylboration, 1,1-vinylboration and protodeborylation, Zeitschrift fuer Naturforschung, 2009, 64b: 995-1002.

[67] Khan E., Bayer S., Kempe R., et al. Synthesis and Molecular Structure of Silole Derivatives Bearing Functional Groups on Silicon: 1,1-Organoboration of Dialkynylsilanes, European Journal of Inorganic Chemistry, 2009, 29-30: 4416-4424.

[68] Wrackmeyer B., Kehr G., Suss J., et al. 1,6-dihydro-1,6-disilapentalene derivatives by 1,1-organoboration of triynes, Journal of Organometallic Chemistry, 1998, 562(2):207-215.

[69] Wrackmeyer B., Tok O. L., Klimkina E. V., et al. Fused Silacarbacycles Containing a Silole Unit: 1,2-Hydroboration and 1,1-Organoboration of Alkynyl(vinyl)silanes, European Journal of Inorganic Chemistry, 2010, 15 :2276-2282.

[70] Khan E., Wrackmeyer B., Kempe R., Combination of 1,2-Hydroboration and 1,1-Organoboration: A Convenient Route to 5-Silaspiro[4,4]nona-1,6-diene Derivatives, European Journal of Inorganic Chemistry, 2008, 34: 5367-5372.

[71] K?ster R., Seidel G., Süss J., et al. Organo-substituierte silole durch zweifache organoborierung von di-1-alkinylsilanen, Chemische Berichte , 1993, 126: 1107-1114.

[72] Dierker G., Ugolotti J., Kehr G., et al. Reaction of Bis(alkynyl)silanes with Tris(pentafluorophenyl)borane: Synthesis of Bulky Silole Derivatives by Means of 1,1‐Carboboration under Mild Reaction Conditions, Advanced Synthesis & Catalysis, 2009, 351(7‐8): 1080-1088.

[73] Ugolotti J., Kehr G., Frohlich R., et al. Photochemical isomerisation of boryl-substituted silole derivatives, Chemical Communications, 2010, 46(17): 3016-3018.

[74] Ugolotti J., Dierker G., Fr?hlich R., Reactions of bis(alkynyl)silanes with HB(C6F5)2: Formation of boryl-substituted silacyclobutene derivatives, Journal of Organometallic Chemistry, 2011, 696: 1184-1188.

[75] M?bus J., Bonnin Q., Ueda K., The 1,1-Carboboration of bis(alkynyl)phosphanes as a route to phosphole compounds, Angewandte Chemie International Edition, 2012, 51: 1954-1957.

[76] Ge F., Kehr G., Daniliuc C. G., et al. Borole formation by 1,1-carboboration, Journal of the American Chemical Society, 2014, 136: 68-71.

[77] Negishi E., Cederbaum F. E., Takahashi T., Metal-Promoted Cyclization .11. Reaction of Zirconocene Dichloride with Alkyllithiums or Alkyl Grignard-Reagents as a Convenient Method for Generating a Zirconocene Equivalant and Its Use in Zirconium-Promoted Cyclization of Alkenes, Alkynes, Dienes, Enynes, and Diynes, Tetrahedron Letters, 1986, 27(25): 2829-2832.

[78] Freeman W. P., Tilley T. D., Liable-Sands L. M., et al. Synthesis and study of cyclicπ-systems containing silicon and germanium. The Question of aromaticity in cyclopentadienyl analogues, Journal of the American Chemical Society, 1996, 118: 10457-10468.

[79] Hudrlik P. F., Dai D. H., Hudrlik A. M., Reactions of dilithiobutadienes with monochlorosilanes: Observation of facile loss of organic groups from silicon, Journal of Organometallic Chemistry, 2006, 691(6): 1257-1264.

[80] Yamaguchi S., Jin R. Z., Tamao K., Modification of the electronic structure of silole by the substituents on the ring silicon, Journal of Organometallic Chemistry, 1998, 559: 73-80.

[81] Buchwald S. L., Nielsen R. B., Selective, zirconium-mediated cross-coupling of alkynes: the synthesis of isomerically pure 1,3-dienes and 1,4-diiodo-1,3-dienes, Journal of the American Chemical Society, 1989, 111: 2870-2874.

[82] Xi C., Huo S., Afifi T. H., et al. Remarkable effect of copper chloride on diiodination of zirconacyclopentadienes, Tetrahedron Letters, 1997, 38(23): 4099–4102.

[83] Liu J. H., Zhang W. X., Guo X. Y., et al. Isolation and synthetic applications of 2,5-bis(alkynylsilyl) zirconacyclopentadienes, Organometallics, 2007, 26(27): 6812-6820.

[84] Xi Z. F., Zhang W. X., Synthetic Methods for Multiply Substituted Butadiene-Containing Building Blocks, Synlett, 2008, 17: 2557-2570.

[85] Xi Z., 1,4-Dilithio-1,3-dienes: reaction and synthetic applications, Accounts of chemical research, 2010, 43(10): 1342-1351.

[86] Yamaguchi S., Jin R. Z., Tamao K., et al. A convenient one-pot synthesis of 1,4-dihalobutadienes from alkynes via titanacyclopentadienes and their transformation to a series of silole derivatives, Journal of Organic Chemistry, 1998, 63(26): 10060-10062.

[87] Dixon D. A., Gassman P. G., The Electronic-structures of trans-bicyclo[4.1.0]hept-3-ene and cis-bicyclo[4.1.0]hept-3-ene-evidence for a twist, bent sigma-bond, Journal of the American Chemical Society, 1988, 110(7): 2309-2310.

[88] Kanno K. I., Kira M., Direct reactions of zirconacyclopentadienes with halosilanes as a convenient synthesis method for siloles, Chemistry Letters, 1999, 28(10): 1127-1128.

[89] Okinoshima H., Yamamoto K., Kumada M., Dichlorobis(triethylphosphine)nickel(II) as a catalyst for reactions of sym-tetramethyldisilane with unsaturated hydrocarbons. Novel synthetic routes to1-silayclopentadienes and 1,4-bis(dimethylsilyl)-2-butenes, Journal of the American Chemical Society, 1972, 94: 9263-9264.

[90] Sanji T., Ishiwata H., Kaizuka T., et al. Silole-core dendrimers: A facile synthesis and photophysical properties, Chemistry Letters, 2005, 34(8): 1130-1131.

[91] Sanji T., Ishiwata H., Kaizuka T., et al. An alternative convergent synthesis of silole-core dendrimers, Canadian Journal of Chemistry, 2011, 83(6): 646-651.

[92] Sanji T., Kanzawa T., Tanaka M., An alternative convergent synthesis of dendrimers with 2,5-diarylsilole at the core, Journal of Organometallic Chemistry, 2007, 692(22): 5053-5059.

[93] Yamaguchi S., Yujiro Itami Y., Tamao K., Group 14 metalloles with thienyl groups on 2,5-positions: effects of group 14 elements on their π-electronic structures, Organometallics, 1998, 17(22): 4910-4916.

[94] Matsuda T., Suda Y., Fujisaki Y., Synthesis of siloles via rhodium-catalyzed cyclization of alkynes and diynes with hexamethyldisilane, Synlett, 2011, 6: 813-816.

[95] Ohmura T., Masuda K., Suginome M., Silylboranes bearing dialkylamino groups on silicon as silylene equivalents: palladium-catalyzed regioselective synthesis of 2,4-disubstituted siloles, Journal of the American Chemical Society, 2008, 130(5): 1526-1527.

[96] Ohmura T., Masuda K., Takase I., et al. Palladium-catalyzed silylene-1,3-diene [4 + 1] cycloaddition with use of (aminosilyl)boronic esters as synthetic equivalents of silylene, Journal of the American Chemical Society, 2009, 131(46): 16624-16625.

[97] Matsuda T., Kadowaki S., Murakami M., Ruthenium-catalysed double trans-hydrosilylation of 1,4-diarylbuta-1,3-diynes leading to 2,5-diarylsiloles, Chemical Communications, 2007(25): 2627-2629.

[98] Yamaguchi S., Jin R. Z., Ohno S., et al. Halodesilylation route to 2,5-difunctionalized 3,4-dialkylsiloles and their derivatization to 2,2‘-bisilole, Organometallics, 1998, 17: 5133-5138.

[99] Yamaguchi S., Jin R. Z., Tamao K., Modification of the electronic structure of silole by the substituents on the ring silicon, Journal of Organometallic Chemistry, 1998, 559: 73-80.

[100] Sohn H. L., Huddleston R. R., Powell D. R., et al. An electroluminescent polysilole and some dichlorooligosiloles, Journal of the American Chemical Society, 1999, 121(12): 2935-2936.

[101] Toal S. J., Sohn H., Zakarov L. N., et al. Syntheses of oligometalloles by catalytic dehydrocoupling, Organometallics, 2005, 24(13): 3081-3087.

[102] Sanchez J. C., DiPasquale A. G., Rheingold A. L., et al. Synthesis, luminescence properties and explosives sensing with 1,1-tetraphenylsilole- and 1,1-silafluorene-vinylene polymers, Chemistry of Materials, 2007, 19(26): 6459-6470.

[103] Sanchez J. C., Urbas S. A., Toal S. J., et al. Catalytic hydrosilylation routes to divinylbenzene bridged silole and silafluorene polymers. Applications to surface imaging of explosive particulates, Macromolecules, 2008, 41(4): 1237-1245.

[104] Boydston A. J., Yin Y., Pagenkopf B. L., A controlled, iterative synthesis and the electronic properties of oligo[(p-phenyleneethynylene)-alt-(2,5-siloleneethynylene)]s, Journal of the American Chemical Society, 2004, 126(33): 10350-10354.

[105] Sohn H., Sailor M. J., Magde D., et al. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles, Journal of the American Chemical Society, 2003, 125(13): 3821-3830.

[106] Wang F., Luo J., Chen J., et al. Conjugated random and alternating 2,3,4,5-tetraphenylsilole-containing polyfluorenes: Synthesis, characterization, strong solution photoluminescence, and light-emitting diodes, Polymer, 2005, 46: 8422-8429.

[107] Liu Z., Wang L., Chen J., et al. Synthesis and optoelectronic properties of silole‐containing polyfluorenes with binary structures, Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(5): 756-767.

[108] Lam J. W. Y., Chen J., Law C. C. W., et al. Silole-containing linear and hyperbranched polymers: synthesis, thermal stability, light emission, nano-dimensional aggregation, and optical power limiting, Macromolecular Symposia, 2003, 196: 289-300.

[109] Chen J. W., Xie Z. L., Lam J. W. Y., et al. Silole-containing polyacetylenes. Synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation, Macromolecules, 2003, 36(4): 1108-1117.

[110] Chen J., Peng H., Law C. C. W., et al. Hyperbranched Poly(phenylenesilolene)s: Synthesis, Thermal Stability, Electronic Conjugation, Optical Power Limiting, and Cooling-Enhanced Light Emission, Macromolecules, 2003, 36(12): 4319-4327.

[111] H?ussler M., Chen J., Lam J. W. Y., et al. Unusual electronic and photonic behaviors of linear poly(silolylacetylene)s and hyperbranched poly(silolylenearylene), Journal of Nonlinear Optical Physics & Materials, 2004, 13: 335-345.

[112] Yamaguchi S., Xu C., Tamao K., Bis-Silicon-Bridged Stilbene Homologues Synthesized by New Intramolecular Reductive Double Cyclization, Journal of the American Chemical Society, 2003, 125: 13662-13663.

[113] Xu C., Yamada H., Wakamiya A., et al. Ladder bis-silicon-bridged stilbenes as a new building unit for fluorescent π-conjugated polymers, Macromolecules, 2004, 37: 8978-8983.

[114] Xu C., Wakamiya A., Yamaguchi S., Ladder oligo(p-phenylenevinylene)s with silicon and carbon bridges, Journal of the American Chemical Society, 2005, 127(6):1638-1639.

[115] Yamaguchi S., Xu C., Yamada H., et al. Synthesis, structures, and photophysical properties of silicon and carbon-bridged ladder oligo(p-phenylenevinylene)s and related π-electron systems, Journal of Organometallic Chemistry, 2005, 690(25): 5365-5377.

[116] Beaupré S., Boudreault P. L., Leclerc M., Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives, Advanced Materials, 2010, 22(8): E6-E27.

[117] Wong W. W. H., Hooper J. F., Holmes A. B., Silicon analogues of polyfluorene as materials for organic electronics, Australian Journal of Chemistry, 2009, 62: 393–401.

[118] Liu J., Lam J. W. Y., Tang B. Z., Aggregation-induced emission of silole molecules and polymers: fundamental and applications, Journal of Inorganic and Organometallic Polymers, 2009, 19: 249-285.

[119] Lu G., Usta H., Risko C., et al. Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory, Journal of the American Chemical Society, 2008, 130(24): 7670-7685.

[120] Chan K. L., McKiernan M. J., Towns C. R., et al. Poly(2,7-dibenzosilole): a blue light emitting polymer, Journal of the American Chemical Society, 2005, 127(21): 7662-7663.

[121] Mo Y., Tian R., Shi W., et al. Ultraviolet-emitting conjugated polymer poly(9,9'-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV, Chemical Communications, 2005(39): 4925-4926.

[122] 房喻, 王辉, 荧光寿命测定的现代方法与应用, 化学通报,2001, 10, 631-636.

[123] 朱斌, 徐登, TCSPC法测量荧光寿命及其在能量传递中的应用, 常州信息职业技术学院学报,2009, 8(3), 14-17.

[124] Tracy H. J., Mullin J. L., Klooster W. T., et al. Enhanced photoluminescence from group 14 metalloles in aggregated and solid solutions, Inorganic Chemistry, 2005, 44(6): 2003-2011.

[125] Yu G., Yin S., Liu Y., et al. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles, Journal of the American Chemical Society, 2005, 127(17): 6335-6346.

[126] Heng L., Zhai J., Qin A., et al. Fabrication of hexaphenylsilole nanowires and their morphology-tunable photoluminescence, ChemPhysChem, 2007, 8(10): 1513-1518.

[127] Son H.-J., Han W.-S., Wee K. R., et al. Intermolecular peripheral 2,5-bipyridyl interactions by cyclization of 1,1’-silanylene unit of 2,3,4,5-aryl substituted siloles: enhanced thermal stability, high charge carrier mobility, and their application to electron transporting layers for OLEDs, Journal of Materials Chemistry, 2009, 19(47): 8964.

[128] Palilis L. C., Murata H., Uchida M., et al. High efficiency molecular organic light-emitting diodes based on silole derivatives and their exciplexes, Organic Electronics, 2003, 4(2-3): 113-121.

[129] Zhao Z., Wang Z., Lu P., et al. Structural modulation of solid-state emission of 2,5-bis(trialkylsilylethynyl)-3,4-diphenylsiloles, Angewandte Chemie International Edition, 2009, 48: 7608-7611.

[130] Zhao Z., Liu D., Mahtab F., et al. Synthesis, structure, aggregation-induced emission, self-assembly, and electron mobility of 2,5-bis(triphenylsilylethynyl)-3, 4-diphenylsiloles, Chemistry, 2011, 17(21): 5998-6008.

[131] Bozeman T. C., Edwards K. A., Fecteau K. M., et al. Tolyl-substituted siloles: synthesis, substituent effects, and aggregation-induced emission, Journal of Inorganic and Organometallic Polymers, 2011, 21: 316-326.

[132] Lee H., Kim J., Kang Y., Structure and optical properties of new spirobisilole: 2,3,3’,4,4’,5-hexaphenyl-1,1’-siprobisilole, Inorganic Chemistry Communications, 2007, 10(6): 731-734.

[133] Mei J., Wang J., Sun J. Z., et al. Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application, Chemical Science, 2012, 3(2): 549-558.

[134] Ilies L., Sato Y., Mitsui C., et al. Modular synthesis of polybenzo[b]silole compounds for hole-blocking material in phosphorescent organic light emitting diodes, Chemistry - An Asian Journal, 2010, 5(6): 1376-1381.

[135] Zhang X. J., Jiang C. Y., Mo Y. Q., et al. High-efficiency blue light-emitting electrophosphorescent device with conjugated polymers as the host, Applied Physics Letters, 2006, 88(5): 51116.

[136] Wang E., Li C., Peng J., et al. High‐efficiency blue light‐emitting polymers based on 3,6‐silafluorene and 2,7‐silafluorene, Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(21): 4941-4949.

[137] Sancheza J. C., Trogler C. W., Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives, Journal of Materials Chemistry, 2008, 18(26): 3143-3156.

[138] Toal S. J., Trogler W. C., Polymer sensors for nitroaromatic explosives detection, Journal of Materials Chemistry, 2006, 16(28): 2871-2883.

[139] Luo J., Xie Z., Lam J. W. et al, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chemical Communications, 2001(18): 1740-1741.

[140] Tamao K., Uchida M., Izumizawa T., et al. Silole derivatives as efficient electron transporting materials, Journal of the American Chemical Society, 1996, 118(47): 11974-11975.

[141] Song Z., Kwok R. T. K., Zhao E., et al. A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells, ACS Applied Materials & Interfaces, 2014, 6(19): 17245-17254.

[142] Toal S. J., Jones K. A., Magde D., et al. Luminescent silole nanoparticles as chemoselective sensors for Cr(VI), Journal of the American Chemical Society, 2005, 127(33): 11661-11665.

[143] Wang M., Zhang D., Zhang G., et al. Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole, Analytical chemistry, 2008, 80(16): 6443-6448.

[144] Chen J., Cao Y., Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Accounts of chemical research, 2009, 42(11): 1709-1718.

[145] Tang B. Z., Zhan X. W., Yu G., et al. Efficient blue emission from siloles, Journal of Materials Chemistry, 2001, 11(12): 2974-2978.

[146] Ferman J., Kakareka J. P., Klooster W. T., et al. Electrochemical and photophysical properties of a series of group-14 metalloles, Inorganic Chemistry, 1999, 38(10): 2464-2472.

[147] He G., Peng H. N., Liu T. H., et al. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles, Journal of Materials Chemistry, 2009, 19(39): 7347-7353.

[148] Chen J. W., Law C. C. W., Lam J. W. Y., et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles, Chemistry of Materials, 2003, 15(7): 1535-1546.

[149] Luo J., Xie Z., Lam J. W., et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chemical Communications, 2001(18): 1740-1741.

[150] Zhao Z. J., Chen S. M., Lam J. W. Y., et al. Steric Hindrance, Electronic Communication, and Energy Transfer in the Photo- and Electroluminescence Processes of Aggregation-Induced Emission Luminogens, Journal of Physical Chemistry C, 2010, 114(17): 7963-7972.

[151] Jang S., Kim S. G., Jung D., Aggregation-induced emission enhancement of polysilole nanoaggregates, Bulletin of the Korean Chemical Society, 2006, 27(12): 1965-1966.

[152] Ren Y., Lam J. W., Dong Y., et al. Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates, Journal of Physical Chemistry B, 2005, 109(3): 1135-1140.

[153] Qin A., Lam J. W. Y., Tang B. Z., Luminogenic polymers with aggregation-induced emission characteristics, Progress in Polymer Science, 2012, 37: 182-209.

[154] Liu J., Lam J. W. Y., Tang B. Z., Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications, Journal of Inorganic and Organometallic Polymers, 2009, 19: 249-285.

[155] Chen J., Kwok H. S., Tang B. Z., Silole-containing poly(diphenylacetylene): Synthesis, characterization, and light emission, Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(8): 2487-2498.

[156] Dippel K., Klingebiel U., Sheldrick G. M., et al. Durch LiF-Eliminierung zu (SiNSiO)-Vierringen-Kristallstruktur eines achtgliedrigen (FLiNSi)-Ringes, Chemische Berichte, 1987, 120: 611-616.

[157] Schmidt-B?se D., Klingebiel U., From 1,5-functional trisiloxanes to (SiO)4-, [Si(OSiN)2Si]-, and[O(SiOSi)2N]-rings, Verlag der Zeitschrift für Naturforschung, 1989, 44b: 395-401.

[158] Chichova N. V., Astapova T. V., Petrovskii P. V., et al. Synthesis of difunctional organooxsilacycloalkanes, Russian Chemical Bulletin, International Edition, 2000, 49(8): 1436-1441.

[159] Kato S. I., Yamazaki N., Tajima T., et al. Synthesis and properties of disiloxane-bridged cyclophanes bearing heteroaromatics, Chemistry Letters, 2013, 42: 401-403.

[160] Jones R. G., Ando W., Chojowski J., Silicon-containing polymers, The formation of siloxane rings in irreversible process. Kluwer Academic Publishers, 2000, 87 p.

[161] Toulokhonova I., Zhao R. P., Kozee M., et al. Reactions of 1,1-dichloro-2,3,4,5-tetraphenylsiloxane with water and alcohols, Main Group Metal Chemistry, 2001, 24(10): 737-744.

[162] Zhang C., Cai Y., Hu R., Studies on the synthesis of silicone oil with high amino value, Abstracts of Papers of the American Chemical Society, Polymer preprints. 2011, 52(1).

[163] Wright. P. V., Ring Opening Polymerization, NewYork, Elsevier, 1984.

[164] Satti A. J., Nador F., Vitale C., et al. Synthesis, characterization, and gamma radiation effects over well-defined poly(vinylsiloxanes) copolymers, Journal of Applied Polymer Science, 2012, 124(1): 832-839.

[165] Liu Y. X., Stringfellow T. C., Ballweg D., et al. Structure and chemistry of 1-silafluorenyl dianion, its derivatives, and an Organosilicon diradical dianion, Journal of American Chemical Society. 2002, 124(1): 49-57.

[166] Pusztai E., Albright H., Cai Y. J., et al. Synthesis and photophysical properties of two strongly fluorescent bis(diquinaldinatoalumino)-9-silafluorenes, Organometallics. 2013, 32: 6871-6874.

[167] Joo W. C., Hong J. H., Choi S. B., et al. Synthesis and reactivity of 1,1-disodio-2,3,4,5-tetraphenyl-1-silacyclopentadiene, Journal of Organometallic Chemistry, 1990, 391: 27-36.

[168] SMART; Bruker-AXS:Madison, WI, 2009.

[169] Sheldrick G.M., A short history of SHELX, Acta crystallographica A, 2008, A64: 112-122.

[170] Palsson L., Monkman A., Beeby A., A Guide to Recording Fluorescence Quantum Yields, JoBinYvon Horiba Ltd.

[171] Dhami S., de Mello A. J., Rumbles G. S., et al. Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect? Photochemistry and Photobiology, 1995, 61: 341.

[172] Rusakowicz R., Testa A.C., 2-Aminopyridine as a standard for Low-Wavelength Spectrofluorimetry, The Journal of Physical Chemistry, 1968, 72(7): 2680-2681.

[173] Eastman J. W., Quantitative spectrofluorimetry-the fluorescence quantum yield of quinine sulfate, Photochemistry and Photobiology, 1967, 6: 55-72.

[174] de Mello J.C., Wittmann H. F., Friend R. H., An improved experimental dtermination of external photoluminescence quatum efficiency, Advanced Materials, 1997, 9: 230-232.

[175] Hu R., Lam J. W.Y., Liu J., et al. Hyperbranched conjugated poly(tetraphenylthene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polymer Chemistry, 2012, 3: 1481-1489.

[176] Kadam R. U., Garg D., Schwartz J., et al. CH-π “T-shape” interaction with histidine explains binding of aromatic galactosides to pseudomonas aeruginosa lectin LecA, ACS Chemical Biology, 2013, 8: 1925-1930.

[177] Hamodrakas S. J., Kanellopoulos P. N., Pavlou K., et al. The crystal structure of the complex of concanavalin A with 4’-methylumbelliferyl-α-D-glucopyranoside, Journal of structural biology, 1997, 118 (1): 23-30.

[178] Janiak C., A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands, Journal of the Chemical Society, Dalton Transactions. 2000, 3885-3896;

[179] Alvarez S., A cartography of the van der Waals territories, Journal of the Chemical Society, Dalton Transactions. 2013, 42: 8617-8636.

[180] Frisch M. J., Trucks G. W., Schlegel H. B., et al. EM64L-Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.

[181] Parr R. G., Yang W., Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.

[182] Casida M. E., Recent Advances in Density Functional Methods, Part I (Ed.: D. P. Chon), Singapore, World Scientific, 1995,155-192.

[183] Wrackmeyer B., 1,1-Organoboration of alkynylsilicon, -germanium, -tin and –lead compounds, Coordination Chemistry Reviews, 1995, 145: 125-156.

[184] Yamaguchi S., Tamao K., Silole-containing σ- and π-conjugated compounds, Journal of the Chemical Society, Dalton Transactions., 1998: 3693–3702.

[185] Yamaguchi S., Tamao K., Theoretical study of the electronic structure of 2,2’-bisilole in comparison with 1,1’-bi-1,3-cyclopentadiene: σ*-π* conjugation and a low-lying LUMO as the origin of the unusual optical properties of 3,3’,4,4’-tetraphenyl-,2,2’-bisilole, Bulletin of The Chemical Society of Japan, 1996, 69: 2327-2334.

[186] Braye E. H., Hubel W. H., Caplier I., New unsaturated heterocyclic systems, Journal of American Chemical Society, 1961, 83: 4406-4413.

[187] Lee S. H., Jang B. B., Kafafi Z. H., Highly fluorescent solid-state asymmetric spirosilabifluorene derivatives, Journal of American Chemical Society, 2005, 127: 9071-9078.

[188] Tamao K., Yamaguchi S., Shiozaki M., et al. Thiophene-silole cooligomers and copolymers, Journal of American Chemical Society, 1992, 114: 5867-5869.

[189] Chen J. W., Cao Y., Silole-containing polymers: chemistry and optoelectronic properties, Macromolar Rapid Communications, 2007, 28: 1714-1742.

[190] Sohn H., Calhoun R. M., Sailor M. J., et al. Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles, Angewandte Chemie International Edition, 2001, 40: 2104-2105.

[191] Wang F., Luo J., Yang K., et al. Conjugated fluorene and silole copolymers: synthesis, characterization, electronic transition, light Emission, photovoltaic cell, and field effect hole mobility, Macromolecules. 2005, 38: 2253-2260.

[192] Chan K. L., Mckiernan M. J., Towns C. R., et al. Poly(2,7-dibenzosilole): a blue light emitting polymer, Journal of American Chemical Society, 2005, 127: 7662-7663.

[193] Wang E. G., Li C., Mo Y., et al. Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability, Journal of Materials Chemistry, 2006, 16: 4133-4140.

[194] Usta H., Lu G., Facchetti A., et al. Dithienosilole-and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors, Journal of American Chemical Society, 2006, 128: 9034-9035.

[195] Tamao K., Yamaguchi S., New type of polysilanes: poly(1,1-silole)s, Journal of Organometallic Chemistry, 2000, 611: 5-11.

[196] Chen J., Law C. C. W., Lam J. W. Y., et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles, Chemistry of Materials, 2003, 15(7): 1535-1546.

[197] Sohn H., Huddleston R., Powell D. R., et al. An electroluminescent polysilole and some dichlorooligosiloles, Journal of American Chemical Society, 1999, 121: 2935-2936.

[198] Chauhan B. P. S., Shimizu T., Tanaka M., New vistas in dehydrocoupling polymerization of hydrosilanes: platinum complex-catalyzed dehydrocoupling of cyclic and acyclic secondary silanes, Chemistry Letters, 1997: 785-786.

[199] Toal S. J., Sohn H., Zakarov L. N., et al. Syntheses of oligometalloles by catalytic dehydrocoupling, Organomettallics. 2005, 24: 3081-3087.

[200] Corriu R. J. P., Donglas W. E., Yang Z. X., Preparation of oligomers containing tetraphenylsilole, acetylene and aromatic groups in the main chain, and incorporation of iron carbonyl, Journal of Organometallic Chemistry, 1993, 456: 35-39.

[201] Sanji T., Sakai T., Kabuto C., et al. Silole-incorporated polysilanes, Journal of American Chemical Society, 1998, 120: 4552-4553.

[202] Ren Z. J., Zhang R. B., Ma Y. G., et al. Synthesis of ring-structured polysiloxane as host materials for blue phosphorescent device, Journal of Materials Chemistry, 2011, 21: 7777-7781.

[203] Yabusaki Y., Ohshima N., Kondo H., et al. Versatile synthesis of blue luminescent siloles and germoles and hydrogen bond-assisted color alteration, Chemistry- A European Journal, 2010, 16: 5581-5585.

[204] Sanchez J. C., Trogler W. C., Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives, Journal of Materials Chemistry, 2008, 18: 3143-3156.

[205] Pusztai E., Toulokhonova I. S., Temple N., et al. Synthesis and photophysical properties of asymmetric substituted silafluorenes, Organometallics, 2013, 32: 2529-2535.

[206] Kumar N. S. S., Varghese S., Rath N. P., et al. Solid state optical properties of 4-alkoxy-pyridine butadiene derivatives: reversible thermal switching of luminescence, Journal of Physical Chemistry C, 2008, 112: 8429-8437.

[207] Hong Y. N., Lam J. W. Y., Tang B. Z., Aggregation-induced emission: phenomenon, mechanism and applications, Chemical Communications, 2009: 4332-4353.

[208] Dreuw A., Pl?tner J., Lorenz L., et al. Molecular mechanism of the solid-state fluorescence behavior of the organic pigment Yellow 101 and its derivatives, Angewandte Chemie International Edition, 2005, 44: 7783-7786.

[209] Koga Y., Kamo M., Yamada Y., et al. Synthesis, structures, and unique luminescent properties of tridentate C∧C∧N cyclometalated complexes of iridium, European Journal of Inorganic Chemistry, 2011: 2869-2878.

[210] Langhals H., Potrawa T., N?th H., et al. The influence of packing effects on the solid-state fluorescence of diketopyrrolopyrroles, Angewandte Chemie International Edition, 1989, 28: 478-480.

[211] Martinez C. R., Iverson B. L., Rethinking the term “pi-stacking”, Chemical Science, 2012, 3, 2191-2201.

[212] Deans R., Kim J., Machacek M. R., et al. A poly(p-phenyleneethynylene) with a highly emissive aggregated phase, Journal of the American Chemical Society, 2000, 122(35): 8565-8566.

[213] Luo J., Xie Z., Lam J. W., et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chemical Communications, 2001, 18:1740-1741.

[214] Shimizu M., Mochida K., Asai Y., et al. Efficient blue electroluminescence of silylene-bridged 2-(2-naphthy)indole, Journal of Materials Chemistry, 2012, 22: 4337-4342.

[215] Yamaguchi S., Jin R. Z., Tamao K., Silole polymer and cyclic hexamer catenating through the ring silicons, Journal of the American Chemical Society, 1999, 121(12): 2937-2938.

[216] Matsuda T., Kadowaki S., Goya T., et al. Synthesis of silafluorenes by iridium-Catalyzed [2+2+2] cycloaddition of ailicon-bridged diynes with alkynes, Organic Letters, 2007, 9(1): 133-136.

[217] Shimizu M., Mochida K., Hiyama T., Modular approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates, Angewandte Chemie, 2008, 120: 9906-9910.

[218] Mochida K., Shimizu M., Hiyama T., Palladium-catalyzed intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-silicon migration, Journal of the American Chemical Society, 2009, 131(24): 8350-8351.

[219] Matsuda T., Yamaguchi Y., Murakami M., Synthesis of silole skeletons via metathesis reactions, Synlett., 2008, 4: 561-564.

[220] Pusztai E., Jang S., Toulokhonova I. S., et al. Synthesis of Highly Fluorescent Diquinaldinatoalumino Silole Derivatives. Chemistry-A European Journal, 2013, 19, 8742-8745.

[221] Chen C.H., Shi J., Metal chelates as emitting materials for organic electroluminescence, Coordination Chemistry Reviews, 1998, 171: 161-174.

[222] Nayak P. K., Agarwal N., Ali F., et al. Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex, Journal of Chemical Sciences. 2010, 122: 847-855.

[223] Pérez-Bolívar C., Takizawa S. Y., Nishimura G., et al. High-efficiency tris(8- hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting, Chemistry-A European Journal, 2011, 17(33): 9076-9082.

[224] Kushi Y., Fernando Q., Crystal and molecular structure of bis(2-methyl-8-quinolinolato) aluminum(III)- .mu.-oxo-bis(2-methyl-8-quinolinolato) aluminum(III), Journal of the American Chemical Society, 1970, 92: 91-96.

[225] VanSlyke S. A., Blue-emitting internal junction organic electroluminescent device, U.S. Patent 5151629, Sept 29, 1992.

[226] Palilis L. C., M?kinen A. J., Uchida M., et al. Highly efficient molecular organic light-emitting diodes based on exciplex emission, Applied Physics Letters, 2003, 82(14): 2209-2211.

[227] Murata H., Malliaras G. G., Uchida M., et al. Silole Derivatives with a High and Non-dispersive Electron Mobility, and a 100% Photoluminescence Quantum Efficiency, Materials Research Society Symp. Proc, 2001, 665, C.6.3.1-C.6.3.6.

[228] Chen J., Xu B., Ouyang X., et al. Aggregation-Induced Emission of cis,cis-1,2,3,4-Tetraphenylbutadiene from Restricted Intramolecular Rotation, Journal of Physics and Chemistry A, 2004,108,7522-7526.

[229] Toulokhonova I. S., Guzei I. A., Kavana M., et al. Synthesis, structure and photophysical properties of i-BuAl(O-8-C10H9N)2 and [(i-Bu)2Al(μ-O-8-C10H9N)]2, Main Group Metal Chemistry, 2002, 25(8), 489-495.

[230] Cai Y. J., Zhang C. C., Wu L. L., et al. Mechanical Damping Properties of Silicone Rubber Prepared by Nano-SiO2 and AGE-Modified Polysiloxane Blends, Advanced Materials Research, 2011, 337: 41-45.

[231] Patel M., Skinner R., Chaudhry A., et al. Impact of thermal ageing on the tin catalyst species in room temperature vulcanised polysiloxane rubbers, Polymer Degradation and Stability, 2004, 83(1): 157-161.

[232] Wang S. G., Su K. D., et al. The preparation of amino-silicone, Textile Auxiliaries, 1998, 15(6): 6.

[233] 王雁冰等, 硅橡胶阻尼材料的研究进展, 材料导报, 2004, 10: 50-52.

[234] Tu C. C., Wang S., Ren Y. Z., Jiang H. G., et al. Dynamic mechanical properties of damping silicon rubber/styrene-butadiene rubber blend, Hangkong Cailiao Xuebao, 2014, 34(2): 58-62.

[235] Rerrod G., Vidal A., Papirer E., Reinforcement of siloxane elastomers by silica. Chemical interactions between an oligomer of poly(dimethylsiloxane) and a fumed silica, Journal of Applied Polymer Science, 1981, 26(3): 833-845.

中图分类号:

 O627.41    

馆藏号:

 O627.41/B040/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式