- 无标题文档
查看论文信息

中文题名:

 基于CSI的室内人体摔倒检测及应用研究    

姓名:

 李鑫    

学号:

 1049721203147    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0810    

学科名称:

 信息与通信工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 信息工程学院    

专业:

 信息与通信工程    

研究方向:

 通信系统理论与通信网络技术    

第一导师姓名:

 李方敏    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-03-22    

答辩日期:

 2015-05-15    

中文关键词:

 CSI感知指纹库 ; 摔倒检测 ; MIMO ; 数据融合    

中文摘要:

       当今社会人口老龄化进程急剧加速,老年人的家庭护理需求日益增多。摔倒作为独居老人的室内活动主要健康威胁,已经引起了健康看护机构和社会的密切关注。在这种社会背景下,摔倒检测系统的需求也变得日益迫切。目前所使用的摔倒检测系统,部分需要复杂的设备搭建,另一部分则需穿戴,而这些都会对老人的日常生活造成干扰,其使用具有局限性。在本文中我们通过无线信号检测室内摔倒动作,利用信道状态信息(CSI,Channel State Information)的特点,有效的弥补了以上不足。

       本文对基于 CSI的室内人体摔倒检测策略进行了研究与分析。主要体现在细粒度的 CSI动作感知指纹库的构建,以及人体摔倒检测策略的设计这两个方面。
       本文的主要贡献可以总结为以下几点:
(1)建立了基于 CSI的细粒度动作感知指纹库。聚焦于人体动作的信息区间,通过分析 CSI的幅值和相位信息特点,以及其对室内无线感知策略设计的影响机理,建立了能初步利用信道状态信息幅度、相位特性的无线感知指纹库;
(2)设计了一种基于动作指纹库的摔倒检测策略。利用多入多出(MIMO)技术及空间分集特性提供的信息,实现权重投票融合。结合获取到的无线感知数据与分类识别相关理论,设计了单人体摔倒检测系统;
(3)在考虑各种环境因素的条件下进行了广泛的验证实验。基于以上理论研究结果,提出了基于实测数据的改进实用方案。

       通过本文的研究有助于,在理论上初步揭示 CSI和 MIMO 技术在无线环境感知应用中的性能潜力,并探索基于 CSI的室内人体摔倒检测策略的可行性。在实践方面,设计了具有高可用性的无线感知与人体摔倒检测策略。

参考文献:

[1] S. Sen, B. Radunovic, R. R. Choudhury and T. Minka. You are facing the Mona Lisa: Spot Localization using PHY layer information[C]. In Proc. of ACM MOBISYS’12, Low Wood Bay, Lake District, UK, pp. 183-196, 25-29 Jun. 2012.

[2] K. Wu, J. Xiao, Y. Yi, M. Gao and L. M. Ni. FILA: fine-grainedindoor localization[C]. In Proc. of IEEE INFOCOM’12, Orlando, FL, USA, pp. 2210-2218, 25-30 Mar. 2012.

[3] K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo and L. M. Ni. CSI-based Indoor localization.IEEE Transactions on Parallel and Distributed Systems[C], vol. 24, no. 7, pp.1300-1309, Jul. 2013.

[4] J. Xiao, K. Wu, Y. Yi and L. M. Ni. FIFS: fine-grained indoor fingerprinting system[C]. In Proc. of IEEE ICCCN’12, Munich, Germany, pp. 1-7,Jul. 30-Aug. 2, 2012.

[5] J. Xiao, K. Wu, Y. Yi, L. Wang and L. M. Ni. FIMD: fine-grained device-free motion detection[C]. In Proc. of IEEE ICPADS’12, Singapore, pp. 229-235, 17-19 Dec. 2012.

[6] Z. Zhou, Z. Yang, C. Wu, L. Shangguan and Y. Liu.Towards omnidirectional passive human detection[C]. In Proc. of IEEE INFOCOM’13, Turin, Italy, pp. 3057-3065, 14-19 Apr. 2013.

[7] Z. Zhou, Z. Yang, C. Wu, L. Shangguan and Y. Liu. Omnidirectional Coverage for Device-free Passive Human Detection[C]. IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 7, pp. 1819–1829, Jul. 2014.

[8] Qi Hao, Fei Hu, Yang Xiao, Multiple human tracking and identification with wireless distributed pyroelectric sensor systems[C], IEEE Systems Journal, vol. 3, no. 4, pp. 428-439, 2009.

[9] 施惟. 人物动作识别的局部特征和生成模型研究[D]. 上海: 上海交通大学,2013.

[10] 徐经纬. 基于无线传感器的人体行为识别研究[D]. 南京: 南京大学,2012.

[11] J. Wilson and N. Patwari. Radio tomographic imaging with wireless networks[C]. IEEE Transactions on Mobile Computing, vol. 9, no. 5, pp. 621-632, May 2010.

[12] Y. Zhao, N. Patwari, J. M. Phillips and S. Venkatasubramanian. Radio tomographic imaging and tracking of stationary and moving people via kernel distance[C].In Proc. of ACM/IEEE IPSN’13, Philadelphia, PA, USA, pp. 229-240, 8-11 Apr. 2013.

[13] R. Zhang, F. H?flinger and L. Reindl. Inertial Sensor Based Indoor Localization and Monitoring System for Emergency Responders[C]. in Proc. of IEEE Sensors Journal, 2013.

[14] 刘文强. 语音识别技术在智能家居中的研究与应用[D]. 大连: 大连海事大学,2013.

[15] 刘彬. 一种改进的基于小波变换的包络提取算法研究[J]. 北京: 仪器仪表学报,2006.

[16] J. DasGupta, K. Castro and R. Addie. Time variation characteristics of MIMO-OFDM broadband channels in populated indoor environments[C]. in Proc. of LAPC, 2011.

[17] A. Akl, C. Feng, and S. Valaee. A novel accelerometer-based gesture recognition system[C]. IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 6197–6205, 2011.

[18] S. Abbate, M. Avvenuti, F. Bonatesta, G. Cola, P. Corsini, and A. Vecchio. A smartphone-based fall detection system.[C]. in Pervasive and Mobile Computing, vol. 8, no. 6, pp. 883–899, 2012.

[19] A. E.Kosba, A. Saeed, and M. Youssef. Rasid: A robust wlan devicefree passive motion detection system[C]. in Proceedings of the IEEE International Conference on Pervasive Computing and Communications. IEEE, pp. 180–189, 2012.

[20] R. S. Moore, R. Howard, P. Kuksa, and R. P. Martin. A geometric approach to device-free motion localization using signal strength[C]. in Technical Report. Rutgers University, 2010.

[21] 杨铮,刘云浩. Wi-Fi雷达: 从RSSI到CSI[J]. 北京: 中国计算机学会通讯, vol. 10, no. 11, pp. 55-60, Nov. 2014.

[22] 杨铮, 吴陈沭, 刘云浩. 位置计算: 无线网络定位与可定位性[M]. 北京: 清华大学出版社, 2014.

[23] J. Xiao , K. Wu , Y. Yi , L. Wang and L. M. Ni. Pilot:Passive Device-Free Indoor Localization Using Channel State Information[C], In Proc. of IEEE ICDCS’13, Philadelphia, PA, USA, pp. 236-245, 8-11 Jul. 2013.

[24] Y. Chapre, A. Ignjatovic, A. Senevirtne and S. Jha. CSI-MIMO: Indoor Wi-Fi fingerprinting system[C]. In Proc. of IEEE LCN’14, Edmonton, Canada, pp. 202-209. 8-11 Sep. 2014.

[25] C. Han, K. Wu, Y. Wang and L. M. Ni. WiFall: device-free fall detection by wireless networks[C]. In Proc. of IEEE INFOCOM’14,Toronto, ON, Canada, pp. 271-279, Apr. 27-May 2, 2014.

[26] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang and H. Liu. E-eyes: Device-free location-oriented activity identification using free-grained WiFi signatures[C]. In Proc. of ACM MOBICOM’14, Maui, HI, USA, pp. 617-628, 7-11 Sep. 2014.

[27] P. Turaga, R. Chellappa, V. S. Subrahmanian and O. Udrea. Machine recognition of human activities: A survey[C]. IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 11, pp. 1473-1488, Nov. 2008.

[28] O. D. Lara and M. A. Labrador. A survey on human activity recognition using wearable sensors[C].IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp.1192-1209, Jul. 2013.

[29] E. Kim, S. Helal and D. Cook. Human activity recognition and pattern discovery[C]. IEEE Pervasive Computing, vol .9, no. 1, pp. 48-93, Mar. 2010.

[30] Q. Pu, S. Gupta, S. Gollakota and S. Patel. Whole-home gesture recognition using wireless signals[C]. In Proc. of ACM MOBICOM’13,Miami, FL, USA, pp. 27-38,Sep. 30-Oct. 4, 2013.

[31] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L.M. Ni. We can hear you with Wi-Fi[C]. In Proc. of ACM MOBICOM’14, Maui, HI, USA, pp. 593-604, 7-11 Sep. 2014.

[32] E. Wengrowski. A survey on device-free passive localization and gesture recognition via body wave reflections[C]. ACM Transactions on Embeded Computing Systems, vol. V, no. N, pp. 1-15, May 2014.

[33] F. Adib, Z. Kabelac, D. Katabi and R. C. Miller. 3D tracking via body radio reflections[C]. In Proc. of USENIX NSDI’14, Seattle, WA, USA, pp. 317-329, 2-4 Apr. 2014.

[34] K. Qian, C. Wu, Z. Yang, Y. Liu and Z. Zhou. PADS: passive detection of moving targets with dynamic speed using PHY layer information[C]. In Proc. of IEEE ICPADS’14, Hsinchu, Taiwan, 16-19 Dec. 2014.

[35] C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu and M. Liu. PhaseU: Real-time LOS Identification with WiFi[C]. In Proc. of IEEE INFOCOM’15, Hong Kong, China, Apr. 26–May 1, 2015.

[36] D. Halperin, W. Hu, A. Sheth and D. Wetherall. Tool Release: Gathering 802.11n Traces with Channel State Information[C]. in Proc. of SIGCOMM, 2011.

[37] T. Lin, I. Ng, S. Lau, K. Chen and P. Huang. A Microscopic Examination of an RSSI-Signature Based Indoor Localization System[C]. in Proc. of HotEmNets, 2010.

[38] M. Zhou, P. Krishnamurthy, Y. Xu and L. Ma. Physical Distance Vs Signal Distance An Analysis Towards Better Location Fingerprinting[C]. in Proc. of HPCC, 2011.

[39] X. Jiang, C. Liang, K. Chen, B. Zhang, J. Hsu, B. Cao and F. Zhao. Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for Indoor Applications[C]. in Proc. of IPSN, 2012.

[40] (美)加斯特. 802.11无线网络权威指南[M]. 南京: 东南大学出版社,2007.

[41] 龚福祥,王庆,张小国. NLOS环境下无线通信网络中的TDOA/AOA混合定位算法[J]. 南京: 东南大学学报,2010,40(5):905-910.

[42] C. Hsiao, Y. Sung, S. Lau, C. Chen, F. Hsiao, H. Chu and P. Huang. Towards Long-Term Mobility Tracking in NTU Hospital’s Elder Care Center[C]. in Proc. of PerCom, 2011.

[43] A. Redondi, M. Tagliasacchi, M. Cesana, L. Borsani, P. Tarrio and F. Salice[C]. LAURA -LocAlization and Ubiquitous monitoRing of pAtients for health care support[C]. in Proc. of APLEC, 2010.

[44] Z. Jiang, W. Xi, X. Li, S. Tang, J. Zhao, J. Han, K. Zhao, Z. Wang, and B. Xiao. Communicating is crowdsourcing: Wi-fi indoor localization with csi-based speed estimation[C]. J. Comput. Sci. Technol., vol. 29, no. 4, pp. 589–604, 2014.

中图分类号:

 TP274    

馆藏号:

 TP274/3147/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式